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Abstract

In this paper we consider a Hartree-Fock type system made by two Schrodinger equations in presence of
a Coulomb interacting term and a cooperative pure power and subcritical nonlinearity, driven by a suitable
parameter 8 > 0. We show the existence of semitrivial and vectorial ground states solutions depending on
the parameters involved. The asymptotic behavior with respect to the parameter 8 of these solutions is also
studied.
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1. Introduction

In the study of a molecular system made of M nuclei interacting via the Coulomb potential
with N electrons, the starting point is the (M + N)-body Schrodinger equation

2 M+N

h2M+N 1 7.7
oW =—— 3 —Ag W+ Yo Ty, W RxRIMEN ¢
2 P m SJTE() - |xj —xk|
J= J.k=
jk

where the constants eZ;’s are the charges and in particular the charge numbers Z;’s are positive
for the nuclei and —1 for the electrons.

Its complexity led to consider various approximations to describe the stationary states with
simpler models.
A possible approximation, used in particular in models of Quantum Chemistry, is the Born-
Oppenheimer approximation. Here the nuclei are considered as classical point particles and a
fundamental assumption is that they are much heavier than electrons (see e.g. [5] for a mathe-
matical treatment).
Starting from the Born-Oppenheimer model, a further possible approximation is the Hartree-
Fock method, which is generally considered fundamental to much of electronic structure theory
and represents the basis of molecular orbital theory. It is variational and the electrons are con-
sidered as occupying single-particle orbitals making up the wavefunction. Each electron feels
the presence of the other electrons indirectly through an effective potential. Thus, each orbital is
affected by the presence of electrons in other orbitals.
This was introduced by Hartree in [15] through the use of some particular test functions, without
taking into account the Pauli principle. Subsequently, Fock in [12] and Slater in [30], to take
into account the Pauli principle, chose a different class of test functions, the Slater determinants,
obtaining a system of N coupled nonlinear Schrédinger equations

n? -
e+ Vesati o ([ 1=y ‘_lewm)ﬂdy)wk+<vexw>k=Ekwk, k=1.....N,
R3 /=

where 1y ‘R3 > C, Vg isa given external potential,
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Vi)Y () dy

N
(Vex¥)i ==Y ¥, P

Jj=1 R3
is the k’th component of the crucial exchange term, and Ey is the k’th eigenvalue.

A further relevant approximation for the exchange potential Vexyr is due to Slater in [31] (see
also Dirac in [10] in a different context), namely

N 1/3
Vete > =C( 3 1w) e (1.1)

j=1

Moreover, slightly different local approximations have been done in [14,16]. For further models
we refer to [27] and references therein.
We emphasize that in these last approximations there is a strong dependence on the electron
density function Z;-V:l [y 2.
For more details about the Hartree-Fock method we refer the reader to [4,9,13,23,24,27,34] and
references therein, and, for a mathematical approach to [18,20,35].

In this paper we take N =2 and we assume

[y 19724 ﬁ|w1|‘12w1>(|w1|‘1>
Blval92yn  [Ynl? 2y, | \ Iyl

_ <|w1|24—2¢1 + ﬁmw—zwzwl)
V2217292 + Bl 9 [y l!

(Vexl//) =-C (
(1.2)

where ¢, § are suitable parameters.
Observe that, for g = 2, the approximation in (1.2) becomes

Vo) = C( Vi ﬂvfl) <|w1|2> C((|w1|2+ﬁ|wz|2)w1>
ex —_ = — ,
BY2 y2 ) \Ival Bl + [¥2) v
that is similar to the one applied by Slater in (1.1), with a different power of the electron density
function which is also perturbed by the parameter §.

Considering ¥; and ¥, real functions, renaming them as u, v, and taking, for simplicity, C =1,
we get

—Au+ w4 Ay yu = [u 920+ Blo)? |u]?2u
in R, (Si.p)
—Av+ v+ Ay v = [v[2 20 4 Blul? [v]1 2

where

2 2
Gup(x) 1= / Wdy € DI,Z(R3)’
xX=Yy

R3
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where this last space is the closure of the test functions in the L?-norm of the gradient.
Observe that ¢, , is the unique solution of

—A¢p= 47'r(u2 + vz) in R3.

Thus, system (S, g) can be also seen as a Schrodinger-Poisson type system (see e.g. [11]).
A particular case of system (S, g), when A =0, leads to the local weakly coupled nonlinear
Schrodinger system

—Au+u=uP2u+ Blv|9ul?%u
in R3, (1.3)
—Av+w?v=[v[X¥ 20+ Bluld|v|? v

for 0 < w* < 1, which has been intensively studied in the past fifteen years. Applying variational
methods, the first works are authored by Lin and Wei [19] and also by Ambrosetti and Colorado
[1], Maia, Montefusco, and Pellacci [21], Bartsch and Wang [2], Sirakov [29], then followed by
an extensive literature presenting investigations of different aspects and variations of this prob-
lem.

In fact this system is obtained when looking for solitary wave solutions of two coupled nonlinear
Schrodinger equations which model, for instance, binary mixtures of Bose-Einstein condensates
or propagation of wave packets in nonlinear optics. In the present scenario, the self-interaction
is attractive (self-focusing) and the interaction between the two components may be either at-
tractive (8 > 0) or repulsive (8 < 0). Many different and clever approaches have been provided
in order to find ranges of parameter 8 for which a positive (ground state) solution (u, v) of the
system is vectorial (namely having both nontrivial components) and so distinguish them from
the semitrivial ones (u, 0) and (0, v). So far a remarkable amount of information has been made
available on this matter, including the proof in [22] of a threshold 8(w, g, n) for existence or
nonexistence of vector ground states for problem (1.3) in R”.

The system above also arises as population dynamics are modeled and their associated
reaction-diffusion equations in bounded or unbounded domains are studied using variational
techniques; among many interesting works on this matter there are [6,7,32] and references
therein. When, for instance, an analysis is performed of the limiting case with respect to a pa-
rameter B which describes interspecies competitions, going to plus or minus infinity, possible
segregation states of two or more competing species are identified, leading to configurations
where the populations occupy disjoint habitats.

In this paper we study the existence of solutions to problem (S). g) in the unknowns (u, v) €
H:= H'(R?) x H'(R?). In particular we are interested in nontrivial solutions, namely (x, v) €
H\ {0} :=H\ {(0, 0)).

Our approach in solving problem (S; g) is variational. Indeed a C ! energy functional in H
can be defined such that its critical points give exactly the solutions of our system.

However in order to deal with compactness issues, we will work (except for the nonexistence
result) in the radial setting and we will use the compact embedding of H!(R?) into L?(R?) for
p € (2,6), see e.g. [3,33]. Then the functional will be restricted to H; := H! (R?) x H!(R?) and
the solutions will be found in H;. The invariance of the functional under rotations and the Palais’
Principle of Symmetric Criticality [26] makes natural this constraint.

Actually we are interested in the existence of ground state solutions: with these terms we
mean radial solutions whose energy is minimal among all the other radial ones.
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Such definition is motivated by the fact that for our system (S;. g), as well as for the corresponding
scalar problem

2
W) gy (1.4)
=yl

—Au+u+rdyu = u??2u  inR3, ¢u(x):=f|
X
R’%

the classical Schwarz symmetrization or the polarization arguments (see [17,25]), that are enough
to treat the nonlocal term, and so to prove the radial symmetry of the ground state solutions for
the Choquard equation, are (or seem to be, respectively) not sufficient to guarantee the radial
symmetry of our ground states. Indeed, in our case, as observed by Lieb in [17], the Riesz in-
equality implies that the energy increases when we pass to the symmetrized function.

In order to state our main result concerning the existence of ground state solutions for g €
(3/2, 3), their vectorial or semitrivial nature, and their asymptotic behavior with respect to the
parameter B, let us first recall that in [28] it was proved that, for any A > 0, the equation (1.4)
possesses a radial ground state solution among all the radial solutions which will be denoted
hereafter with v € H! (R?).

Observe that, whenever a ground state of (S;, g) is semitrivial, then, necessarily, it is of the type
(10, 0) or (0, tv).
We have

Theorem 1.1. Let g € (3/2,3), A > 0, and B > 0. Then (S, p) has a radial ground state solution
(ug, vg) # (0,0). Moreover:

(1) if B =0, the ground state solution is semitrivial;
(i) if B € (0,2971 — 1) and q € [2,3), the ground state solution is semitrivial;
(iii) if B€(0,q — 1) and q € (3/2,2), the ground state solution is vectorial and

lim dist ,Go)=0
5 lim, dis H(Gg, Go)

where Gg:={(ug, bg) € H; : (ug, vg) is a ground state of (S;, g)} and Go:={(1v, 0), (0, 1)},
@v) if

-1, 3/2,2),
g e lq » +00) forq e (3/2,2) (1.5)
(297" = 1,400) forq€l2,3),
the ground state (ug, vg) is vectorial and
lim (ug,vg) =(0,0) in H; (1.6)
B—>+00
V) if B=29"1—1and q € [2,3), system (S, ) admits both semitrivial and vectorial ground

states.
Some remarks on our result are now in order.
The presence of the nonlocal Coulomb type coupling in (S;, g) implies several difficulties with

respect to system like (1.3), in particular for what concerns the semitrivial or vectorial nature of
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the ground states, which is, actually, the main goal of the paper.
Indeed system (1.3) when 8 = 0 or when we consider semitrivial solutions, reduces to single
equation

—Au+u=u%u inR>.

For such equation, well known results have been obtained about uniqueness of the positive solu-
tion, its nondegeneracy, its radial symmetry and exponential decay. These facts are used in the
study of (1.3) (see [21,22]).
In our case, even for 8 = 0 the system remains coupled in the nonlocal term.
Moreover, even if, for semitrivial solutions, system (S, g) reduces to a single equation, for such
equation no result about uniqueness, nondegeneracy, and eventual symmetries of positive solu-
tion is known.
Finally, to deal with powers g € (3/2, 3), following [28], we use a rescaling (see (2.11)) which
generates different behaviors of the terms in the functionals but that anyway allows us to project
any nontrivial couple (#, v) in a suitable manifold. Actually, for the simpler case g € (2, 3), the
usual projection on the Nehari manifold is enough.
Nevertheless, our analysis shows that the nature of the ground states depends on the local non-
linearity. Indeed our results are comparable with the ones in [22], even if they are obtained in a
different way: we start from the existence of ground states and, using the maximum values of a
suitable one variable function related to the local nonlinearity (see Lemma 2.4), we estimate the
ground state energy level and construct also a particular family of ground states (see Lemma 3.7),
that, in the particular case ¢ = 2 and 8 = 1, gives infinitely many ground states.

Additionally, due to the symmetry in « and v of (S;, g), it is easy to obtain nontrivial solutions
with u = v (see Remark 2.2). For 8 large enough, such solutions are ground states (Theorem 6.1)
and, for 8 small, they are not (Theorem 5.6).

Finally, the solutions we find are classical. Indeed, if (#, v) € H;, then ¢, ,, € leof (R3) and
2,

o(R?) which in turn implies

then it is Cloo’g (R3). But then by bootstrap arguments u,v € C
Quy € Clzof (R3). Moreover, by the Maximum Principle, every nontrivial component of a solution
can be assumed strictly positive without loss of generality.

Of course our problem can be written using the equivalent complex notation ¥ :=u + iv.

Observe that, with such a notation,

)

() + () v »I?
——dy = d
lx =yl lx =yl
R3 R3
depending only on | |. For our scopes, especially in order to distinguish between semitrivial and
vectorial ground states, in the analysis it should be necessary to use real and imaginary parts of
Y and so we will proceed using the vectorial notation (u, v).
Additionally, we prove also the following nonexistence result.

Theorem 1.2. In HN (L2 (R3) x L2 (R?)) N (L®.(R3) x L (R3)), system (Si.p) has only the

loc loc
trivial solution if ¢ > 3 and no solution with fixed sign if g € [1/2, 1].

Here, with fixed sign solution, we mean couples (u, v) where each component is strictly pos-
itive or negative.
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The paper is organized as follows.
In Section 2 we present few preliminaries in order to prove our results. In particular we recall
some results in [28] that will be used to compare the ground state level of our functional (for
example to study the asymptotic behavior). We give also the variational setting for our problem.
In Section 3 we prove the nonexistence result, Theorem 1.2, which is based on a Pohozaev
identity associated to the problem. Then we give also the proof of the existence of a nontrivial
ground state in Theorem 1.1.
Then item (i) is proved in Section 4, (ii) and (iii) are proved in Section 5, (iv) is proved in
Section 6, and (v) in Section 7.
We complete Section 5 and Section 6 showing that some particular solutions arising from the
study of the single equation (see Remark 2.2) are or not ground states (see Theorem 5.6 and
Theorem 6.1, respectively).

Notations
e Unless otherwise stated, integrals will always be considered on the whole R* with the
Lebesgue measure.
e We denote with || - || the norm in H'(R3) and with || - || p the standard L? — norm.
e We denote with ¢, a generic sequence which vanishes as n tends to infinity and with C a
suitable positive constant that can vary from line to line.
Other notations will be introduced whenever needed.
2. Preliminary results
In order to prove our results, let us first recall some facts about (1.4). In [28] it was proved that

for any A > 0 and g € (3/2, 3), equation (1.4) has a radial ground state solution v € Hr1 (R3)\
{0}. It is found as a minimizer of the C !_functional

Do) := %nwnﬁ + %nunﬁ + %fuzqsu - %nunig, u e H' (RY)
on the constraint
N* = {u e H'(R%): 7. o(u) :0}, 2.1)
where

qg—3

Th,0(u) :=EIIVu||2+§|Iu||2+Z?»/¢uu T g el

The set A is obtained as a linear combination of the Nehari identity

2
IVul + ||u||%+x/¢>uu2— Jul2 =0

and the Pohozaev identity
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1 2, 30 2 3.0
5||Vu||2+5||u||2+zxf¢uu - 5l =0,

Given u # 0, consider the path

Cu(t) :==12u(t), t>0. (22)
Note that
3 49-3
t t A t* 2
To(u®) = S IVull3 + 2 lull3 + 517 / Wy, — % luell
33 2 10 3.3 2 49 -3 4,5, 2
Tt = 31V + ehulf + 3ar° [ = L2, @)

and t — 7, (&, (¢)) has a unique critical point, denoted with #, > 0 corresponding to its maxi-
mum. The elements of A are then all of type &, (t,) due to the fact that

d
Jr0Gu (1) = EI)L,OQ:M ().
In particular u € A" if and only if #, = I and then

0<Zy0(to) = inf 7 o(u) = inf L o(Gu(ty)) = inf max 7y o(u(1)).
ueN* ueH} (R3)\{0} ue H(R3)\{0} 1>0

2.4)
Remark 2.1. Of course (tv, 0) and (0, tv) are semitrivial solutions of our system (S g) for any
B and so, since I g(u,0) = I, g(0,u) =TI, o(u), they are necessarily ground state whenever the
ground state is semitrivial.
For future reference we set
n:=17, o(tv).
Moreover, the same arguments of [28] can be repeated for the equation
—Au~+u+2xpu=~14+Bu??u nR? (2.5)

where B > 0, leading to the existence of a ground state solution 3g that minimizes the functional

B 2q 1 I » 1+B8. 2
Doy, p(u) :="To5,0(u) — ZHMHZZ = §||VM||2 + §||M||2 + > duu” — ?HMHZZ

on the set of u € Hr1 (R3) satisfying

4q -3
(1+ B)llul3? =0.

3 o, Lo 3 2
T, p(u) ¢=§||VM||2+§||M||2+§)»f¢uu Y
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Coming back to our system (S; g), observe that it can be written as

—AuA4u+rpu=u*"2u + Blv|9|ul9u
—Av+v+Argv=[v[9 20+ Blul|v]?"2v  inR>. (2.6)

—A¢ =4r (u® +v?)

Moreover

f |Vpu.v|* = 47 / W* + V") u v 2.7)
R3 R3

from which the estimate follows

196uull2 = € (Nl + J1v]2)

It is standard to see that the weak solutions of (S;, g) are characterized as the critical points of
the C! functional defined on H

Ipa,v) = SIVuI3+ 2 a3+ 2 19012 + Sl + 2 [ @+
’ 2 2 2 2 4 ’
1 2 2 B
= 5 (g + 1) — / el vl
Remark 2.2. Observe that, forevery § >0 and u € H 1 (]R3),
Dg(u, u) =21y g(u) (2.8)
and, (u, u) is a solution of (S, ) if and only if u is a solution of (2.5).

If (u,v) is a solution of (S, g), multiplying the first equation of the system by u and the
second one by v we see that (u, v) € H satisfies the Nehari type identities

2
IVull5 + ||u||%+xfu2¢u,v = Jluell +ﬁ/|u|‘1|v|q, (2.9)
2
Vo3 + ||v||§+va2¢u,v = ||v||23+/3f|u|q|v|q. (2.10)
Given (1, v) € H\ {0}, we denote with y,, , : [0, +-00[— H the curve

Vo (8) i= (u(-), 0(1-)). 2.11)
By a simple calculation we have that
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_ f 2 N 2 2, 3 2, .2
L g(Vuw (1) = 5 (IVullz +1IVoliz) + 2(||M||2+ vllz) + 1! U+ v9)Pu,v

143

2q 2q
2 (Ilullqur||v||2q+2ﬁ/|u|q|v|q),

which will be useful in our arguments.
For future developments, we need the following results.

Lemma 2.3. Let ., v, 0 > 0, p > 3, and consider the function §5(t) := ut + vt3 —ot?. Then

(a) fo has a unique critical point t; > 0 which corresponds to its maximum and there exists a
unique Ty >ty such that {5 (%) = 0;

(b) lim fa (ts) =0;
0—+00

(© lim T, =0andu= lim o%TP~"

o—>+00 o—+00

Proof. Property (a) is essentially [28, Lemma 3.3] and is trivial.
Let us prove (b). Since p > 3, then, necessarily: t, — 0as 0 — +oo. Indeed, if there exists £ > 0
and a divergent sequence {o,} such that t,, > t, then

n= pant(’,’"_l - 3\)‘((2,'1 = t?,n (po,,t(’,’n_3 —3v) > C(po,tP 2 —3p) > 40
giving a contradiction. Thus

p—3

p—1 2
fc(ta)ng<TM+ vtg)—>0aso—>+oo.

As for (¢), since T, satisfies
pu=ocTP~ 132 (2.12)

we deduce, as in item (b), that T, — 0 as ¢ — 400 and so, coming back to (2.12), we con-
clude. O

Now we state a fundamental tool that will allow us to distinguish the nature of the ground
states pairs, identifying whether they are semitrivial or vectorial (see also Remark 3.8). Its proof
is quite technical and involves simple analytical arguments. So we postpone it in the Appendix A.

Lemma 2.4. Let hg(y) := y7 + (1 — y)4 +2By9/2(1 — y)¥/%, y €[0,1], B >0 and g > 1.

(1) If B =0, then bo(y) < 1 and the equality holds only in the endpoints y =0, 1.
(i) If g € (3/2,2), then, for any fixed B > 0, there ex'ists a unique yg € (0,1/2] such that
ha(ys) =hp(l — yg) = maxyeqo,11hHp(y) > 1 and ﬂhnol+ vg =0. Moreover yg =1/2 if and
—
onlyif B >q — 1.
(iii) If q €12, 3), then:
(a) for Be (0,271 —1), bp(y) < 1 and the equality holds just in the endpoints yg =0, 1;
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(b) for p= 20-1 1, bg(y) <1 and, in particular,

0,1/2,1 ifge(2,3)

Y=L N =2

(c) B>29"1—1, then bg achieves its unique global maximum on yg =1/2 and hg(1/2) >
L.

3. Existence and nonexistence results

In this section we prove the nonexistence result stated in Theorem 1.2 and the existence of a
nontrivial radial ground state of (S;_p), i.e. the first part of Theorem 1.1.

3.1. A Pohozaev identity and the nonexistence result

As it is usual for elliptic equations, the solutions satisfy a suitable identity called Pohozaev
identity. It can be obtained, at least formally, by the relation

d
Elk’ﬂ(ut’ v;) o =0 where u;(x):=u(x/t).
In the next lemma we get it rigorously. The proof is indeed standard, however we revise the
argument for the sake of completeness. In what follows By stands for the ball centered in 0 € R3
and radius R > 0.

Lemma 3.1.If (u,v,¢) is a solution of (2.6) with (u,v) € HN (L2 ([R3?) x L>(R3) N
(L.(R3) x L (R3)), with fixed sign if ¢ € [1/2, 1], then it satisfies the Pohozaev identity

loc loc

1 3 5
5(||Vu||%+ IVl|3) + 5<||u||%+ Ivll3) + ZA/(#H%

3 2 2
=3 <||u||23 + ||U||ZZ +2,3/ |u|qlvlq) .

Proof. Let (u, v, ) be a solution of (2.6). If g € [1/2, 1], without loss of generality, we can
assume u, v > 0.
Preliminarily we recall (see also [3, Proposition 2.1] and [8, Lemma 3.1]) that for any R > 0

3.1)

/A V—1/|V|21f|V|Z+R/|V|2 (32)

ux-Vu= > u ? x-Vu > ul®, .
Bg Br dBg 3By

1 2 3 2 R 2

¢ux~Vu=—§ ux-Vqﬁ—E du +5 du”, 3.3)
Br Bg Bgr JBR
/g(u)xoVu:—3/G(u)+R / G(u), 34
Br Bg 0BRr
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[l Pttt Vit oo Vv———/|u|q|v|q+ [ w69
Bg 3BR
N

where g : R — R is a continuous function with primitive G (s) = [ g(tydr.

Observe that all the previous integrals make sense due to the reglflarity of u, v, ¢. In particular,
since u € Liy (R), then Au € Wli’cp (R3) for all p > 1, the integral in the left hand side of (3.2)
is well defined.

Then, multiplying the first equation in (2.6) by x - Vu, integrating on Bg, and taking into account
(3.2), (3.3), (3.4), (3.5), we get

1 3 A 32
E/|Vu|2+§/u2+2/ x-Vo+ — /¢ /|u|24

Bp Br Br BR

+ﬁ/|v|q|u|q Zux- Vu———/lx Vul> + = /|Vu| += /u2 (3.6)

dBg BBR 6BR

AR X

_ — q

t3 pu’ 2 / o] 4.
dBR dBp

In a similar way, from the second equation in (2.6) we infer

3 2
/IVUI+/ /UXV¢>+ /cb /|v|‘1
2 2q
Bgr

Bgr

R
q1,,19—2 . - __ . 2 - 2 - 2
~|—,3/|u| [v|? " %vx - Vv R / |x - Vv|” + > / [Vvl~ + > /v 3.7)
Bgr

dBR JdBg JdBR
WR , R ,
+ 22 [ 2= = [ ™
2/¢ 2q/||

BBR BBR

and, from the third one, multiplying by x - V¢, we deduce

/|v¢| +4n/(u +vH)x- V¢———/|x Vo> + = /|v¢| (3.8)

dBRr aBR

Then, summing up (3.6) and (3.7), taking into account (3.8) and (3.5) we arrive at

1 3 A 3A
3 Javarewupys [a et =2 [iver+ S [a? 4t
Br BR Br Br
3
- Z/(Wq [0+ 28ul?[v]7)

591



P. d’Avenia, L. Maia and G. Siciliano Journal of Differential Equations 335 (2022) 580614

1 2 2, R 2 2
"R (Ix - Vul +|X'VU|)+5 (IVul”+ Vo[

dBR dBr

R AR R A
+5/(u2+v2)+7/¢(u2+v2>—5/<|u|ZQ+|v|2q>+ﬁ/|x~V¢|2

3BR aBR 3BR 33R

RA
- - q q

N f| e f|u| o,

8BR aBR

Arguing as in [3, pag. 321], there exists a suitable sequence R,, — +o0co on which the right hand
side above tends to zero. Thus, passing to the limit we deduce that

—<||W||2 +IVol3) + = (||u||2 +lvl3) — ||V<z>||2 + A/m +o)e
3 q q
=3 (Ilull +lvl3? g T28 [ lul Ivl
q
Hence, using (2.7), we achieve the conclusion. 0O
With the Pohozaev identity (3.1), we can show easily our nonexistence result. Indeed we have
Proof of Theorem 1.2. Let (u,v) e HN (qu (]R3) x L% (]R3)) be a nontrivial solution of (S;, )

for g € [1/2, 1]U[3, +o0o[. Using the Nehari identities (2.9) and (2.10) and the Pohzaev identity
(3.1) we have

2 2
0= [IVull3 + VoI5 + llul3 + ||v||%+x/<u2+v2)¢u,v — ullyd = lvlly —2/3/|u|‘f|v|‘f

5
= (1=3) Va3 +1VoID) + (1 = )l + 013 + (1 - gq) [ @+ D

which is strictly negative for ¢ > 3 or strictly positive for ¢ < 1 and so we reach a contradic-
tion. O

3.2. Existence of a radial ground state

Here we find a radial ground state solution for our system (S, g). As we have stated in the
Introduction, to get compactness we restrict ourselves to radial functions. Thus, from now on, we
will consider H; as functional space, even if several facts do not require symmetry assumptions.

We start showing that, as in [28, Lemma 2.1], the following properties hold.

Lemma 3.2. Let g € (1, 3) and {(up,, v,)} C H; be such that (uy, v,) — (u, v) in Hy as n — 4-o00.
We have, as n — +00,

Gun,vn — Puv in DIARY), (3.9)
/(ulzi + vrzz)(ﬁun,vn - /(MZ + v2)¢u,v, (310)
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/Iunlqlvnlq%/lulqlvlq- (3.11)

Proof. Let us define on Dr1 ’2(R3) the linear and continuous operators

T (w) :=/VwV¢u,,,u,, <:4n/(uﬁ+u3)w),
T (w) :=/VwV¢,M <= 471/(142 ~|—v2)w>.

Then, due to the compact embedding of the radial functions we have
T3 (w) = T w)| < 4wl = ?lloss + 103 = *lloss) < eall Vol

Hence T,, — T — 0 as operators on Drl’z(R3), and by the Riesz Theorem this implies (3.9).
Convergence (3.10) follows from

Gupvn — Gup in LOR?) and  u? +v2 — u® +v? in LS (R?).
Finally, to get (3.11), we observe that, using again the compact embedding of the radial functions,

Metn | = Tul?ll2, Nlval? = [v]? 2 — 0.

[ [ tnt1anl® =ttt = [ antefont? = pote] + [ 1

q q
= w3y Mval? = [0Ill2 + I0ll3, Hual? = 1ul?ll2 = &,

Thus

= Jul?|

concluding the proof. O
Let us consider now the Nehari-Pohozaev manifold
M= {(u, v) e Hi\ {0} : Jy g(u,v) = O}

where

3 2 N 2 N 2., .2
Jr.pu,v) = 2(I|Vu||2+ IVvllz) + 2(||u||2+ vll2) + 4?» U™+ v9)uv

4qg -3 2 2
Y (||M||23+||v||23+2ﬂ lul?lv|? ).

Observe that the condition Jy g(u, v) = 0 can be obtained by a linear combination of the
Nehari (2.9), (2.10) and Pohozaev (3.1) identities. Thus, M contains all nontrivial radial critical
points of I, g.

Moreover, the following simple result assures us that any couple (u, v) € H; \ {0} can be uniquely
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projected on M via y, , (see its definition in (2.11)) and gives us a further property of such a
projection.

Lemma 3.3. For any (u, v) € H; \ {0} there exists a unique t,, , > 0 such that y, ,(t,.,) € M and
Ik,ﬁ(ytt,v(tu,v)) Z?fglk,ﬂ(yu,v(t))- (3.12)

Proof. The existence and uniqueness of #, , is an easy consequence of (a) in Lemma 2.3, since

3 t 3
JipVun (@) = —r3<||w||% +1IVvll3) + §<nu||% + i3 + —xﬁ /(u2 + 0w

493
qzq 4“(nun + vl +2ﬂ/Iu|"|v|q)

and g > 3/2.
Moreover, since

d
J)»,ﬁ(yu,v(t)) = tEIA,ﬁ(Vu,v(t))v

we have that 7, , is the unique strictly positive critical point of I g(yy,»()) and so, again by (a)
in Lemma 2.3, we conclude. O

Now we are ready to find the ground state solutions of (S; g) by minimizing the functional
I, g on M.

Proof of Theorem 1.1 (existence of a ground state). We divide the proof in several steps.

Step 1: M is bounded away from zero, i.e. (0,0) ¢ dIM.
Let (1, v) € M. Since

2f|u|q|v|q < 13+ 1013 < € (Nl + o))
we deduce
Sl + 1) = € (1l + 1w12)

so that there exists p > 0 such that ||u||?> + ||v]|*> > p > 0 and the conclusion holds.
Step 2: mg :=infpq [ g > 0.
For (u, v) € M we set, for simplicity,

a=||Vulz+IVol5, b= llul5+ vl

C:=k/(u2+v2)¢u,u, = flu3! +|Iv|| +2ﬁ/|14|q|v|q
If k.= I g(u, v), we have
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Lo Ly Lo Lok
24TV TR T 24T

301, 3 49-3
2at b4 le—
20T Ty,

d=0.

In terms of a, b, k the unknown c is given by

_, 84—k —Q2q —3)a—2b(g 1)

0
= 2g -3
Then taking into account Step 1, we have
(29 =3)p < (29 =3)(a+b) < (29 —3)a +2(q — )b < (4 =)k, (3.13)

where p > 0 is the constant found at the end of the previous step, meaning that k is bounded
away from zero.

Step 3: If {(un, vy)} is a minimizing sequence for I, g on M, then it is bounded. Hence, up to
subsequence, it weakly converges to some (ug, vg) in H;.

Let {(un, va)} C M such that k,, := I g(uy,, v,) — mg. Setting for simplicity

an = | Vun |3+ 11V l3,  bn = lunl? + lval3,
5 5 2 2 (3.14)
Cn :=A/<u,, U Bupvns A= llttnllog + a5 +2ﬂf lttn |7 |vn )9,

arguing as in Step 2, see (3.13), we get
(2g —3)(an + bn) < (4 — 3k, — (4g — 3)mg
and so the minimizing sequence {(u,, v,)} is bounded.

Step 4: {(u,, v,)} strongly converges to (ug,vg) in Hy. Then (ug,vg) € M and it minimizes

L .
Here is the scenario in which we need the radial setting.
Observe that, by the previous step, it follows that

iy —ug, v, —vg, in L>(R?) and in D"*(R?) (3.15)
and, eventually passing to a suitable subsequence,
IVugl3 <tim [Vun|3.  [Vogl3 <lim Vol  llugl3 <limlu,l3.  [logll3 <Tim v, 3.
(3.16)
Maintaining the notations in (3.14), we define
a:=lima,, b:=limb,, ¢:=limc,, d:=limd,,
n n n n
where we are assuming that the limits exist (eventually passing to suitable subsequences) being
{an}, {bn}, {cn}, {d,} bounded sequences (see the previous Step).

Observe also that, by Step 1,
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a+b>0. (3.17)
Moreover, the relations

L. g(up,vy) > mg  and  Jy g(uy,v,) =0

give

2 2 4 2q
(3.18)
a+ 54 e- M35
—a+ - —c— =0.
2 2 4 2q
Thus, by the second equation in (3.18) and (3.17) we get d > 0.
Hence, using an analogous notation as before for the pair (ug, bg), namely
a:=|Vugl3+ IVogl3,  b:=lluglls + llogll3,
o 2 2 (3.19)
c:= A/(uﬂ + 03 bugoge d:=lluglsd + lloglsl + Zﬂ/ Jugl? [0,
by (3.16), we have
a<a and b<b. (3.20)

Observe that, due to Lemma 3.2 and to the compact embedding in the radial setting
¢c=c and d=d.

Ifa+b<a+b,then, taking into account that J; g(u,, v,) =0, we have that J; g(ug, vg) <0,
meaning that (ug, vg) ¢ M and that (ug, vg) # (0, 0). This implies that a, b, c,d > 0 and, by
(3.20), also a, b > 0.

Moreover, by Lemma 3.3 there exists a unique #,; v, > 0 such that yy, v, (fug,0) € M (see

@2.11)).

Consider now, for ¢ > 0, the functions

3 3 4q-3 3 3 49-3

t toot t - t r— ot r4a=3_
=—a+-b+—c— d, f)=—a+-b+—c—

f@) Fat b+ 2 f@) sa+sb+ e 2%

Note that

FO) = Lopupop ) and  1£/(0) = T g Gy (1)).

The functions f and f have both a unique critical point corresponding to the global maximum
(see (a) in Lemma 2.3). In particular, the global maximizer of f is Tug,vp and, by (3.18), we

deduce that ? ac_hieves the maximum in # = 1. Moreover, since we are assuming a + b < a + b,
itholds f(t) < f(t) for t > 0. Hence Yy, v, (fug,05) € M and
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Ix,ﬁ(Vuﬁ,nﬂ (tu,g,nﬂ)) = f(tulg,t)ﬂ) < r?fé(?(t) =mg,

which is a contradiction. 3

Hence, by (3.20), we infer a =a and b = b, so that, using (3.15), we get (u,, v;) — (ug, vg) in
H;.

Step 5: (ug, vg) is a regular point of M, i.e. J)’\’ﬂ(u/g, vg) #0.

Assume by contradiction that J )/\ 8 (ug, bg) =0 so that we have

—3Aug +ug + 3y vsup — (4g —3) (lug*9=2 + Blugl?2|og|) ug =0 G21)

—3Abg + bg + 3Py, — (49 —3) (012772 + Blogl?2|ug|?) b =0.
Then, under the notations (3.19), we have

Lavlpi Lo Ly
—a+=b+-c——d=mg,
29727 T4 T oy p

3001 3 49-3
a4 b4 e
24P

3a+b+3c— (4g —3)d =0,
33 15 _49-3

Zat+lbt 2e—3
2T,

d=0,

d=0,

where the third equation is simply Jx/, 5(u,3, vg)[ug, vg] =0 and, finally, the fourth equation is
the Pohozaev identity for (3.21). The solution of the above system is given by

4q -3 49 -3 4q -3 3q
——mg, d=
4q—-1D

T T22q-3)

T Taq-3) P

=————"———mg.
429 =g —1)
Since g € (3/2, 3), then a < 0, which is impossible.

Step 6: I; 5(ug, vg) =0.
Thanks to the Lagrange multiplier rule we know that, for some £ € R,

I)C’ﬂ(uﬂ, 0/3) = KJ)i,ﬁ(u/g, Uﬁ).

We want to show that £ =0.
By expliciting the above identity we get

— (3¢ — 1) Aug + (€ — Dug + (3 — Daduy o, ip
—((4g —3)€ — D[Jug*?72 + Blugl? o] Jug = 0 (3.22)

and

— (3¢ = 1)Avg + (€ — Dog + (30 — DAdug 0595
— ((4g — 3 — D[Iog*7% + BloglT*|ug|?]og = 0. (3.23)
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Now, multiplying (3.22) and (3.23) by ug and vg respectively, integrating, and, finally, summing
up the two identities obtained, we get, using again the notations in (3.19),

Bl—Da+E—-1)b+@BL—-1)c—((4g —3)¢—-1)d =0.

On the other hand, arguing as in Lemma 3.1, we can associate to (3.22) and (3.23) the Pohozaev
identity

3+ 2Ge—1)e— S (g -3 — D=0
) 4 T -

Then a, b, ¢, d satisfy the system

1 1 1 1
Cd4 b+ —c— —d =mg.
2a+2 +4C 2 mg

31, 3 49-3

Zadcht Te— d=0,

24T Ty,

(3 —Da+ (€ — b+ B3t —1)c — (4 — 3t — d =0,
301

3 5 3
—(L—-1Db+ -3 —-1)c——((4g -3)¢—-1)d =0.
5 a5 E=Db+ 1 ( )c 2q((q ) )

The determinant of the matrix of the coefficients is

_tBL=1D(g - D(2q -3)
q

The assumptions on g imply that ¢ — 1 # 0 and 2g — 3 # 0. Moreover, also £ # 1/3. Indeed, if
it were £ = 1/3, the third equation of the system above would be

2 2(2q —
2, 223,
3 3

0

which is impossible since b, d > 0. Thus, if it were also £ # 0, then the determinant would be
different from zero, meaning that the system would have a unique solution. In particular

34 m 0
= <
4g—1)2q—3) °

which is impossible. Summing up it yields £ = 0, concluding the proof of the Step. O
Remark 3.4. Without loss of generality, since (Jug|, |vg|) is also a solution at the level mg,
applying the Maximum Principle, we can assume that, whenever ug, bg are nontrivial, they are

strictly positive.

Remark 3.5. For future reference, we observe that the statements of previous Steps 5 and 6 and
the inequality
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4g -3
0 24 llogl? < ,
< llugll” + llogli S5y —3™

which follows by (3.13) in Step 2, hold for any pair of ground states.

Moreover, as an immediate consequence of Theorem 1.1 what we have just seen we can prove
the following further result.

Corollary 3.6. Let (ug, bg) € H; \ {0} be a ground state found in Theorem 1.1. We have that

mg =1 1) = inf  max/ t
8= D.g(Vug.0s (1)) o o) nax a8V (1))

Proof. By Lemma 3.3 we have that, for every (u, v) € H; \ {0},

mg= min I g(u,v) < g(Vu,v(tu,v)) =max I g(Yu, ().
M t>0

(u,v)e

Then, passing to the infimum on (u, v) € H; \ {0}, we get

mg < (M’U)iengr\{o} max Lo g(Vuw(@) < max L g (Vup.op (1)) = L g(Yug,0p (1)) = mp

concluding the proof. O

We conclude this section showing a further interesting property.
By Remark 3.4, in polar form the ground state (ug, bg) can be written as

(ug,vp) = (pcos Vg, psindp), o =uz+v5>0, Vg=vs(x)€[0,7/2]. (3.24)

Note that whenever the ground state is vectorial, then g € (0, /2), while for semitrivial
ground states it is ¥g =0 or g =7 /2.

The next lemma shows how, starting from (15, vg) we can obtain a convenient ground state

with the additional property of having as angular coordinate a constant function .
By Lemma 2.4, let yg = cos? g € [0, 1/2] be a maximum point of hg.

Lemma 3.7. For > 0, there exists tg > 0 such that Yo, costy.04 sineg (1) € M and

mg = I, g (Vop costp.0p sindp (1p))- (3.25)
In particular Yop cosOp.0p sinfp (tg) is a ground state solution.
Proof. The conclusion will be achieved showing that the projection of (0g coség, 0 sinfg) in

M reaches the ground state level.
Since (og cosbg, 0gsinfg) € H; \ {0}, by Lemma 3.3 there exists a unique zg > 0 such that

Yop cosbp,0p sinbg (tp) € M.
Let us show it is at the ground state level. Observe that
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mg nf  max I g(Yu,»()) fr}lj(;( Ik,ﬂ(ygﬁcos(-)ﬂ,gﬁ sinfg (1)) ZIA,ﬂ()/QﬂCOSGﬁ,gﬂ sin95(tf}))~

- (u,v)leHr\{O} >0
Moreover, being yg = cos? 0 a maximum point of hg in [0, 1/2],
2 2 2 2
ug! +0y" +2Buh0 = b (cos® )y’ <bp(yp)ey’
Then, since
IVugll3 + 1Vosl3 = llepVosl5 + IVesl3 = [ Vesll3.

for every ¢t > 0,

3 4q-3

t t A 1™ b
1.6 (Vop cost.op siney () = IV epll3 + S llegll3 + 17 / Pos@5 — =308 pleslg

< ivasli+ Llopiz+ 2 [ gy,02
=5 @sll2 29132 4 0p @B

a3 2q 2q q.49
2 /(uﬂ +0g ~|—2,3uﬂnﬁ>

< IA,ﬂ(Vu,g,nﬁ (t))

Thus, by Lemma 3.3,
]A,ﬂ ()/g,g cosfg,0p sinfg (tﬂ)) = IA,ﬂ(yu,g,Dﬁ (tﬂ)) <mg,
concluding the proof. 0O

Remark 3.8. Whenever max[o,1)hg > 1, then yg € (0,1/2] and Lemma 3.7 gives a vectorial
ground state.

4. The case =0
In this section we prove item (i) of Theorem 1.1: if 8 = 0, each ground state solution (1, v)

of (Sy.,p) is semitrivial.
Consider system (S;,g) for g =0, namely

—Au+u+ Ay pu = |u>%u

in R3. 4.1
—AV 4V + Ay v = [v|2—2y @D

Of course (tv, 0) and (0, tv), where tv is a ground state of (1.4) obtained in [28] (see also Sec-
tion 2), are solutions of (4.1). Since for every u € Hr1 (R?), we have that

Lyow) =1 0@,0)=1,000,u),
then, by (2.4),
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n=17, o(tv) = I o(w,0) = I 0(0,0) = inf max [ 0(¢, (1), 0),
ueH(R3)\{0} 1>0

where the path ¢, has been defined in (2.2).
Moreover

my <n. 4.2)

First we prove that the ground state level of the two variables functional I ¢ is the same of
the ground state level of the one variable functional Z, .

Lemma 4.1. my = n.
Proof. If we use the polar coordinates for the couples (i, v), namely we write
(u,v) = (o cos, psint}) where Q2 =u’+v>and 9 = ¥ (x) €10, 2r],
we have that
IVl +IVoll3 = leVo 13 + [ Vell3

and, by (i) in Lemma 2.4,

2q 2q 2 2 -2 2q
el + vl =/Q ¢ (cos™ 9 +sin 9) < lloll3]-

Then, for every ¢ > 0,
493

2q

lol3! = Z.0(zo (1))
(4.3)

I = t A t
2 2 2 3 2
Lo(uw () = = 1loVO; + s 1IVella + s llell; + ¢ /%Q -
2 2 2 4
Hence, (4.3), (2.4), and (4.2) imply

o= inf  max/l o(yu ()= inf — maxl; o({(1),0)=n,
(u,v)eH\{0} >0 oeHI(R3)\{0} t>0

concluding the proof. 0O
Now we are ready to show the main goal of this section.
Proof of (i) of Theorem 1.1. Assume by contradiction that there exists a vectorial ground state

(u,v). By Remark 3.4, without loss of generality we can assume that u, v > 0. Thus, using as
before the polar coordinates, we can write

(,7) = (gcos?,psind), withg> =u> + 70> and ¥ = 0 (x) € (0, 7/2).

Then, using (i) in Lemma 2.4, we have that cos2? ¥ 4 sin> 9 < 1, and so by (3.12) and arguing
as in (4.3), we get that, for all 7 > 0,
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mo > I 0(Vi,5(1)) > I1,0(5g(1), 0).

Then
mo > max [ 0({(1), 0) > inf  max1/) (5 (), 0) =n,
>0 oe H R\ (0} 1>0
which is a contradiction with Lemma 4.1. O

5. The case 8 > 0 and small

In this section we consider

e 0,291 — 1) forg €[2, 3) as in (ii) of Theorem 1.1,
©O,g -1 forg € (3/2,2) asin (iii) of Theorem 1.1.

Let us start with the proof of item (ii) of Theorem 1.1.
Preliminarily, as in Section 4, we prove

Lemma 5.1. If € (0,297 ! — 1] and q € [2,3), then mpg =n.

Proof. Since for any u € H! (R?) it holds

Low)=15u,0) =1, 50, u), (5.1
then
n=717, () = inf max I g(&,(2),0) > inf  max/l; g(yu,(t) =mg.
ueHrl (R3)\{0} t>0 (u,v)eH\{0} >0

Moreover, introducing the polar coordinates as in Lemma 4.1 and using (a) and (b) of (iii) in
Lemma 2.4 we get

lull32 + lvll52 + 2/3/ ||| :/Q2ff (cos2‘1 9 +sin 9 + 28| cos 919 (1 — sin’ 0)‘1/2)
2
<lleoll3!.
Thus, arguing as in Lemma 4.1, we arrive at I g(Vu,v(t)) = I, 0({p()) andsomg >n. O
As an immediate consequence we can conclude as follows.

Proof of (ii) in Theorem 1.1. Hence for 8 € (0,29~ — 1), the proof is completely analogous to
that one of item (i) of Theorem 1.1, using (a) of (iii) in Lemma 2.4 instead if (). O

Let us address now (iii) of Theorem 1.1. We first show that the ground state (ug, bg) is vecto-
rial and then that it converges to a semitrivial solution as 8 — 07.

First we show a preliminary property that we will use also in the next section, since the
conclusion holds whenever there exists a point where hg introduced in Lemma 2.4 is greater
than 1.
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Lemma 5.2. If B € (0,q — 1) and q € (3/2,2), then

mg <n. 5.2)

Proof. In virtue of (ii) of Lemma 2.4, let 6g € (0, w/2) be defined by yg = cos? 05 €(0,1/2)
and consider the vectorial function

(i, V) := (wcosbg, osinbg) € H; \ {0}.
A simple computation shows that
Vi3 + V313 = | Viol3
@15 + 1915 = lIwll3,
f @ + )y = f Proto’,
117 + 13150 + 2/3/ )9 [3]7 = (coszq 0p + sin> B + 28 cos? G sin? eﬁ) o |3
2 2
= (3§ + (1 =y + 28581 = 37 w1134
2
> i3,

where the last inequality is due again to (ii) of Lemma 2.4.
Consequently, recalling (5.1), for any ¢ > 0 we have

1443

2q

3
t t A 2
T.0(Ew () = Lo 0(0) = S IVRIZ + S w])3 + 17 / Prot0” — o]l

3
t - - t o - A o~
> (IVil3 + 1Vol3) + E(nun% + 11713 + Zﬁ/m,mﬂ +7%)

l4q73 ~ 2 ~ 12 g
2% (||u||2q+||vllzq+2ﬁ/|u| [v] )

=L p(va5(0))-

Passing to the maximum on ¢ > 0, since both maxima are achieved, and recalling that ¢
Z5.,0(Lro (¢)) achieves its maximum in ¢ = 1 being v € N* (see (2.1)), we can write

n=7; o(to max /, 5()) > inf max /. H))=m
2,0(10) > nas g (Vi) = L 2B Vuw (1)) B

concluding the proof. O
We point out that, in contrast to the proof of Lemma 3.7, where we need to take exactly yg,
here in Lemma 5.2 it is enough to take an arbitrary point where fg is greater than one.

As an immediate consequence of Lemma 5.2 we have
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Proof of (iii) in Theorem 1.1 (vectorial ground state). If the ground state were for instance of
type (ug, 0), then, recalling (5.1), we would have

mg =1 g(ug,0) =1 o(ug) > n
contradicting (5.2). O

As observed in Remark 3.8, by Lemma 3.7, if yg = cos? 0p € (0, 1/2] is the maximum point
of hg, we have

Corollary 53.1If 8 € (0,g — 1) and q € (3/2,2), then there exists tg > 0 such that
Yop cosp,0p sinbg (tg) is a vectorial ground state.

Now we show the asymptotic behavior as B — 0" of the vectorial ground state solutions
found in (iii) of Theorem 1.1. As in the proof of (i) of Theorem 1.1, we assume without loss of
generality that ug and vg are positive.

Arguing as in Step 1 and Step 2 of the Proof of Theorem 1.1, we can get for 8 > 0 in a
bounded set a uniform lower bound for the ground states levels mg.

However, in what follows, we give an estimate of such a lower bound depending on the energy
level of the ground state g of

—Au+u=u2uinR>
(see e.g. [36]).

To this aim let us introduce another limit problem which will be useful for our purpose: system
(S.,p) with A = 0, namely

—Au4u=ulP2u+ Blv|9|uldu
in R3. (5.3)
—Av+v=v¥ 2v+ Blul?|v]? 2

Let (ﬁﬁ,'ﬁﬂ) € H; be the vectorial, positive and radial ground state solution, see [22, Corollary
1], which exists for any 8 > 0 and g € (3/2, 2). In our notations, the energy functional related to
(5.3)1s Iy g. Since

lo.p(Vay5, () > —00 as t — +00,
there exists ag > 0 such that

Va5 € Up = {n € C((0,ap], Hy) : Io,5(n(0)) =0, Io s (1(ap)) < 0)}

and we have the usual minimax characterization of the ground state

inf maéilo,ﬁ(ﬁ(l)) = Iop(Uig, bp), 5.4

nelg t>

see e.g. [21, Lemma 3.2].
The next lemma allows us to get the desired lower bound.
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Lemma 5.4. If0 < 8 <1, then

q=2 q=2
mg > 2411y 4(g,0) =297 0(g).

Proof. By Lemma 3.3 and (5.4) it holds
mg = max L, g (Vg (1) = max 1o, (Yug,0p (1)) = nienrfﬂ max lo,p(n(1)) = Io,p (g, vp).

On the other hand, by [22, Proof of Lemma 4] we know

1
~ e KT T
o, p(tig, o) > <1 f lo,p(g.0).

n _—
k>0 1+ k24 +2Bk4
If we set

(1 + k%)

k)=
O = gk

we have that, if 81 < B2, then, for every k > 0, &g, (k) > &g, (k). Hence, if B € (0, 1], it holds
Ep(k) = £1(k) = &1(1) =277

and the conclusion follows. O

To prove the asymptotic behavior of the ground states (ug, vg), we will show first the asymp-
totic behavior of the ground state levels. However in order to do that, we will work with another
family of ground states different from (ug, vg).

Now we are ready to prove the asymptotic behavior as B — 07 of the ground state levels.
Proposition 5.5. If g € (3/2,2), as B — 0T, the family of radial ground state solutions of (S, p)

Sfound in Lemma 3.7 converges in H; to a semitrivial solution of (S, g), whose nontrivial compo-
nent is a radial ground state solution of (1.4). Moreover

li =n. 5.5
ﬁg‘g* mg n ( )

Proof. Using the notations of Lemma 3.7, let us set
ug = 55 cosbg, vg:= 53 sinfg, 55 = Lo (tg) = l‘éng ().
By Remark 3.5 and (5.2) we deduce that
(ug,vg) = (u,v) inH;asfg — 0.

Since |[(ug, vg)ll = llogll and, by Lemma 2.4, limg_, o+ 0p = /2, we see that ug — 0 in
H'(R3). Thus u=0.
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We claim that v # 0.
By the Sobolev embeddings and the Strauss Lemma, ug — 0 and gg — v in L” (R3) for all
p € (2,6). Hence, using Lemma 5.4, (3.25), and (ii) in Lemma 2.4,

q-2 1
0<20TZp0(g9) < I pug, vp) = I, g(ug, vp) — Eli,,g(uﬁ, vp)lug, vgl
A ~  q—1 ~ 129
Z_Z/%,s@ﬁ"F?hﬁ(Yﬁ)”Qﬁ”zq
<Ly sl — Lt
= =5, PeOplioslly 2g Ml

getting the claim.
Now we prove that v is a solution of (1.4).
We know that (ug, vg) satisfies, for any ¢ € Hr1 (R,

/vVﬁV<p+/vﬁgo+xf¢uﬁ,vﬁv,3¢—/|vﬁ|2q—2v5¢—ﬁ/|uﬂ|Q|vﬂ|q—2vﬁ<p=o.

Then passing to the limit as 8 — 0%, using also that, by Lemma 3.2,

‘/Vﬁ(p(buﬂ,v;; - /V§0¢u,v

we infer
/VvV(p + /V(p —l—)»/wpgbu,v - / |v|2q_2vrp =0

which means that v solves (1.4).
To show the strong convergence vg — v in Hr1 (R3), observe that, for all ¥ € Hr1 (R3),

< (Iug.vsl6lvg — Viizss + ldug.vs — duvllslviiizs)lellizs — 0,

I} g(up, vp)[0, ¥] =0.

Then, choosing Yy =vg — v, we get

/Vv/gV(vlg —v)—i—/v;;(v,g —v)+kaﬁ(Vﬁ —v)¢uﬁ,vﬁ
= / Vg1 2vg(vg — V) + B / lugl? [vgl9 ™2 vg (vg — V).

Passing to the limit as 8 — 0T in the above identity, we get ||v,3||2 — ||v||?, and so the strong
convergence holds.
Finally, using (5.2), we infer

n>mg =1 g(ug, vg) = L0(v),
and then v is a ground state solution of (1.4) and (5.5) follows. O
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Hence we can conclude.
Proof of (iii) of Theorem 1.1 (asymptotic behavior). By Remark 3.5 and (5.2) we have that
{(ug, vg)} is bounded and then weakly convergent in H; to some (u*, v*).
First we prove that, actually, the convergence is strong.
Indeed, since for every i € Hr1 (]R3), Ii,ﬁ(u,g, vg)[, 0] = 0, then, choosing ¥ = ug —u* we get,

arguing as in the proof of Lemma 5.5, that ug — u* in Hr1 (R3). Analogously we get v g — v*in
H!(R?) and, arguing as in Lemma 5.5, we see that (u*, v*) satisfies (4.1).
On the other hand, by (5.5) and the strong convergence of {(ug, bg)} we arrive at

Lo, vy =n>0. (5.6)
Thus (u*, v*) eH;\{0}.

Let us see now that (u*, v*) is semitrivial.
Using Lemma 4.1 and (5.6), we get

n=mp < [ o(u*,v*) =n.
Hence, (u*, v*) is a ground state for (4.1), and so, by item (i) of Theorem 1.1, is semitrivial. O
We conclude this section with a further result about a particular solution of our system.
Let us recall that, as observed in Remark 2.2, (34, 35), where 3g is a ground state solution of
(2.5), is a solution of (S;. g). Thus, in view of (ii) of Theorem 1.1, for g € [2, 3), such a solution
is not a ground state. The same holds also for g € (3/2, 2). More precisely we have
Theorem 5.6. If B is small enough, the couple (38, 38) is not a ground state solution of (S, p).
Let us start with two preliminary lemmata concerning the monotonicity of the ground states
levels for a single equation of type (2.5) with respect to the parameters A and 8. Their proofs use
standard arguments.
Lemma 5.7. Let 0 < A1 < A and w;, i = 1,2 be ground state solutions of
—Au4u+riduu=u??%u, inR?, i=1,2.
Then

Ty, ,0(01) <y, o(02).

Proof. Since
3
0= Jh,,0(m2) = T, ,0(t02) + Z(Kz — A1) / 0310, > Joy.0(02) = iy 0(Cror (1))
and by (2.3) and (a) in Lemma 2.3, we see that there exists #; € (0, 1) such that

T340, (1)) =0,
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namely, &y, (1) € N
Therefore

I}»],O(ml) = IAI,O(sz (tl)) < I)uz,o(é‘mz (tl)) < I)\z,o(;mz (1)) = I}LZ,O(m2)’
concluding the proof. O
Lemma 5.8. For 0 < By < B, let 38,, 3, be respective ground states of (2.5). Then

0 <Z53,8,Gpy) <Zon,p (3p1)-

Proof. We know that

0= jZA,ﬂ] (3/31)

3 1 3 4 -3 X
= 3193 1 + 5l 3+ 5 [ G055, - 2+ Bl I

T2

3 2 1 2 3 2 49 -3 2q
> EHVZaﬁl Iz + Ellaﬁl 7 + EK/%ﬁlﬁ,gl - T(l + B2 1381 114
=g72)u,/32(3/‘51)'

Hence, by (2.3) and (a) in Lemma 2.3, there exists tg, € (0, 1) such that

jZ)L,ﬂz (§3ﬂ1 (tﬁ1)) =0.

Then,
0 <Z51,8,(38,) = ZLan,p, (L35, (18)) < L2i 1 (535, (18,)) < L2s, 1 (§35, (1)) =ZL21, (3;)
and the proof is complete. O
In particular Lemma 5.8 says that, if 8 > 0,
T51.,83p) < Z22,0G0)- (5.7
Then we can prove the desired result.

Proof of Theorem 5.6. By Lemma 5.7, with A; = X, Ay = 2X, 0] = tv, 103 = 30, and (2.8), we
deduce

n="17 o(to) <I2;,0G0) <2I21,0G0) = I»,0Go, 30)- (5.8

Let now {,} C (0, +00) be such that 8, — 0 and 8,,1 < B, and kg, :=12.p,Gp,) > 0.
By Lemma 5.8 we know that {kg, } is bounded and, by (5.7),

0 <kpy <kp, <Z2:.,0(G0)- (5.9)
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Arguing for the single equation (2.5) as in (3.13) and Remark 3.5, we get that {3,} is bounded
in Hr1 (]R3) and we know also that Iéx b (3g,) =0. Thus

,Bn 2
T51.,0(8,) = kg, + leaﬂn 59 = kg, +&n

and

< CBullzp, 177" = &n,

1% (351l = 80 |Th, g, 3501+ o / 3 0 23,0
v|[=<

namely that {34,} is a (PS) sequence for Zy;, .

Arguing as in the Proof of Proposition 5.5, we show that 35, — w in Hr1 (R3), Ié)ho(w) =0, and,
by (5.9), w # 0.

Moreover,

B 2
kg, =72.0Gg,) — illéﬂn ”22 — Dy 0(w).
Hence, by (2.8) and (5.8),

D g, 3, 38,) = 2k, — 212; 0(w) =210 0(Go) = I5.,0(30, 30) > n.

Thus, by Proposition 5.5, we get that for 8 small (34, 35) cannot be a ground state. O
6. The case 8 large

In this section we study the vectorial nature of the ground states (ug, vg) of (S, p) for § large,
namely satisfying (1.5), and we show that such a ground state vanishes as § — 4-00. Indeed we
have

Proof of (iv) of Theorem 1.1. The fact that the ground state solution has to be vectorial, follows
taking into account that, by (ii) and (c) of (iii) in Lemma 2.4, max|o,1] g > 1. Then arguing as
in Lemma 5.2, this implies that n > mg and so we can conclude as in the proof of (ii) of Theo-
rem 1.1.

To prove (1.6), let us fix u € Hr1 (R3) \ {0} and let Tg > O be the real number such that
J5.,8(Vu,u(Tg)) =0, namely such that y, ,(Tg) € M. By (c) in Lemma 2.3 we have that

. . 4q -3 2q .. 4g—4
ﬂEToo Tp =0 and ﬂEToo T(1 +B)llullyf T = Jlue]|3.

Thus
0<mg <1 g(Vu,u(Tp))
T4q73

2
= T3 Vull3 + Tgllul; + ATE/%MZ — ’370 + B) lull
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493
49-3 T

1[4q -3
=T,s||u||%+5[ BT ||u||§g—Tﬁ||u||%}—ﬁT(Hﬂ)nuuig

2 2 29-3 dg—4, 2
=§Tﬂ<||u||z— p (1+,3)Tlgq ||M||2Z -0

as f§ — +o0.
Hence we conclude by Remark 3.5. O

Now we show that, actually, a ground state can be taken with the two components equal.
Indeed

Theorem 6.1. If 8 satisfies (1.5), then
mg =1, (3B, 3p)>
where 3g is a ground state solution of (2.5).

Let (ug, bg) be a vectorial ground state just found and let us consider its polar coordinates
as in (3.24). Taking into account Lemma 3.7 and so Remark 3.8, using (ii) and (c) of (iii) in
Lemma 2.4, we have
Lemma 6.2. If B satisfies (1.5), then there exists tg > 0 such that Vos/v/2.05/ NAUAS M and

mp = L.pps/v2,00/v218))-
In particular Yos/v205/ v2tg) is a ground state solution.
Thus we are ready to complete the proof.
Proof of Theorem 6.1. By Lemma 6.2, there exists ug € Hr1 (R3)\ {0} such that
mg =1, g(ug,ug).
Thus, by Remark 2.2, we infer
mp = 212; g(up) = 2125,8(3p) = 11.,8(3p.38) = Mg
concluding the proof. O
7. The particular case 8 =27"1 —1and ¢q € [2, 3)

In this particular case we can argue as in Section 5 and Section 6 to get both (semitrivial and

vectorial) types of ground states.
By Lemma 5.1, being mg = n, we get that
L, p(10,0) =1, g(0,t0) =mg
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and so (v, 0) and (0, tv) are semitrivial ground states.
Of course in this case we cannot proceed as in the proof of item (i) of Theorem 1.1 since 0 and
1 are not the only maximisers of fjz and so, the existence of further maximisers gives vectorial
ground states too (see (b) of item (iii) in Lemma 2.4).
Indeed Lemma 3.7 applies with yg = 1/2, and so 6g = 7 /4. Hence we get that there exists 15 > 0

such that Vgﬂ/ﬁ,gﬁ/ﬁ(tﬁ) eM,

Wp = 1p Vo /va.05/ 218D

and y 0s/v2.08/ /2(1p) is a ground state solution.

More in particular, if ¢ = 2, hg = 1. Then we can take an arbitrary yg € (0, 1), obtaining that
there exists 7g > 0 such that Yop cosfp.0p sinfp (tp) is a ground state solution.

Finally we observe that, as a corollary of this last property, arguing as in Theorem 6.1, we have
also that

mg =1, (3. 38)-
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Appendix A. Proof of Lemma 2.4

In this Appendix we present the details of the proof of Lemma 2.4.
First observe that hg is even with respect to the line y = 1/2.
Since h is strictly decreasing in [0, 1/2], property (i) is trivial.
Now let us consider 8 > 0. The proof when ¢ = 2 is trivial. Thus, let us focus on (iii) for g €
(2, 3) and (ii).
Observe that, for any fixed 8 > 0, we have that h%(1/2) =0 and bg(1/2) = 23_‘1q(q —1-5).
Thus, if B < g — 1, then, 1/2 cannot be a maximum point of hg.
Moreover, in (0, 1/2],
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q

q(lhﬁ(yy;q-l = iy)q_l ! +ﬂ(1i—y)r1 - (%) @1

Thus, to study the sign of h%, we can consider the right hand side of (A.1) and, for simplicity, we
write it as

gp(t) =171 — 14 pr9/271 — g2 1€ (0,1],
whose derivative is

tp(1)

g Wherets(n) =2(q - D142 — Bgt + B(g —2).

gp(t) =
Let us prove (ii).
Note that, whenever g € (3/2,2) and g > 0, we have that 1im+ hig(y) = 400. Thus, since
y—0

hs(0) =1, we get the existence of yg € (0, 1/2] such that hg(yg) = maxyepo,11h5(y) > 1.
Moreover

lirg+ gp(t) =+ooand gg(1) =0. (A2)
t—

If B € (0,g — 1) we have that v4(0) <0, tg(1) > 0, and v is (strictly) increasing on the left of
its unique maximum point ((g — 1)/8)*?~% and then it is (strictly) decreasing. Thus tg has a
unique zero tg which is the unique critical point (minimizer) of gg and gg is (strictly) decreasing
in (0, tg) and (strictly) increasing in (tg, 1). Hence, by (A.2), gg has a unique zero in (0, 1) which
gives us the unique maximum point yg.

If B =g — 1 we have that vg(0) <0, tg(1) =0, and tg is (strictly) increasing in (0, 1). Thus
9:3 is (strictly) negative in (0, 1) and so, by (A.1) and (A.2), h% is (strictly) positive in (0, 1/2).
Hence the symmetry of g allows us to conclude.

If B > q — 1 we have that t5(0) < 0, tg(1) <0, and vg is (strictly) increasing on the left of its
unique maximum point ((g — 1)/8)%/®*~9) and then it is (strictly) decreasing. Moreover

2_
o ((q _1 /5)2/(2—61)) - szq)((q _ 1Y@ _ g2y _,

Then, vg is (strictly) negative in (0, 1) and so, by (A.1) and (A.2), h;g is (strictly) positive in
(0, 1/2). Hence we can conclude as in the previous step.

To prove the asymptotic behavior of yg as 8 — 0, let us recall that yg € (0, 1/2) for 8 <g — 1.
If, by contradiction, we assume that yg /> 0 as 8 — 07, then there exists a sequence {f,} tending
to zero, such that hg, (yg,) > 1 and li;n vg, =€ €(0,1/2]. Then

. 1
1 Shy{nhﬁn()’f}n) =1+ (1-07< 501 <1
getting the contradiction.
Let us prove (iii).

In this case, namely whenever g € (2, 3) and 8 > 0, we have that h;g(O) = —q. Moreover
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gp(0) =—1and gg(1) =0. (A.3)

If B € (0, — 1), we have that tg(0) > 0, tg(1) > 0, and vg is (strictly) decreasing before its
unique minimum point (8/(qg — 1))?/¢=2 and then it is (strictly) increasing. Moreover

Blg—2)

a2 _Pla—2)
g ((ﬁ/(q 1))~/ ) N

((q S DR/AC '32/(61—2)) =~ 0.

Thus, tg is (strictly) positive in (0, 1) and so, by (A.1) and (A.3), h/ﬁ is (strictly) negative in
(0, 1/2). Hence the symmetry of hg allows us to conclude.

If B =g — 1 we have that t5(0) > 0, tg(1) =0, and tg is (strictly) decreasing in (0, 1). Thus
g}; is (strictly) positive in (0, 1) and so, by (A.1) and (A.3), f):g is (strictly) negative in (0, 1/2).
Hence we can conclude as in the previous step.

If B > g — 1, we have that vg(0) > 0, tg(1) <0, and vg is (strictly) decreasing in (0, 1). Thus vg
has a unique zero tg which is the unique critical point (maximum point) of gg and gg is (strictly)
increasing in (0, tg) and (strictly) decreasing in (tg, 1). Hence, by (A.3), gg has a unique zero
in (0, 1) which gives us a unique minimum point of hg in (0, 1/2) and so, the unique local
maximum point of hg in (0, 1) is 1/2.

Since hg(0) =hg(1) =1 and hg(1/2) = (1 + B)/2971 we get that 1/2 is the global maximum
point of g in [0, 1/2] if and only if g > 29=1 — 1 and it is the unique global maximum if and
onlyif g >29-1 —1.
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