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Abstract

In this paper we consider a Hartree-Fock type system made by two Schrödinger equations in presence of 
a Coulomb interacting term and a cooperative pure power and subcritical nonlinearity, driven by a suitable 
parameter β ≥ 0. We show the existence of semitrivial and vectorial ground states solutions depending on 
the parameters involved. The asymptotic behavior with respect to the parameter β of these solutions is also 
studied.
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1. Introduction

In the study of a molecular system made of M nuclei interacting via the Coulomb potential 
with N electrons, the starting point is the (M + N)-body Schrödinger equation

ih̄∂t� = − h̄2

2

M+N∑
j=1

1

mj

�xj
� + e2

8πε0

M+N∑
j,k=1
j �=k

ZjZk

|xj − xk|�, � : R×R3(M+N) → C

where the constants eZj ’s are the charges and in particular the charge numbers Zj ’s are positive 
for the nuclei and −1 for the electrons.

Its complexity led to consider various approximations to describe the stationary states with 
simpler models.
A possible approximation, used in particular in models of Quantum Chemistry, is the Born-
Oppenheimer approximation. Here the nuclei are considered as classical point particles and a 
fundamental assumption is that they are much heavier than electrons (see e.g. [5] for a mathe-
matical treatment).
Starting from the Born-Oppenheimer model, a further possible approximation is the Hartree-
Fock method, which is generally considered fundamental to much of electronic structure theory 
and represents the basis of molecular orbital theory. It is variational and the electrons are con-
sidered as occupying single-particle orbitals making up the wavefunction. Each electron feels 
the presence of the other electrons indirectly through an effective potential. Thus, each orbital is 
affected by the presence of electrons in other orbitals.
This was introduced by Hartree in [15] through the use of some particular test functions, without 
taking into account the Pauli principle. Subsequently, Fock in [12] and Slater in [30], to take 
into account the Pauli principle, chose a different class of test functions, the Slater determinants, 
obtaining a system of N coupled nonlinear Schrödinger equations

− h̄2

2m
�ψk + Vextψk +

(∫
R3

|x − y|−1
N∑

j=1

|ψj (y)|2dy
)
ψk + (Vexψ)k = Ekψk, k = 1, . . . ,N,

where ψk : R3 → C, Vext is a given external potential,
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(Vexψ)k := −
N∑

j=1

ψj

∫
R3

ψk(y)ψj (y)

|x − y| dy

is the k’th component of the crucial exchange term, and Ek is the k’th eigenvalue.
A further relevant approximation for the exchange potential Vexψ is due to Slater in [31] (see 
also Dirac in [10] in a different context), namely

(Vexψ)k ≈ −C
( N∑

j=1

|ψj |2
)1/3

ψk. (1.1)

Moreover, slightly different local approximations have been done in [14,16]. For further models 
we refer to [27] and references therein.
We emphasize that in these last approximations there is a strong dependence on the electron 
density function 

∑N
j=1 |ψj |2.

For more details about the Hartree-Fock method we refer the reader to [4,9,13,23,24,27,34] and 
references therein, and, for a mathematical approach to [18,20,35].

In this paper we take N = 2 and we assume

(Vexψ) = −C

( |ψ1|q−2ψ1 β|ψ1|q−2ψ1

β|ψ2|q−2ψ2 |ψ2|q−2ψ2

)( |ψ1|q
|ψ2|q

)

= −C

( |ψ1|2q−2ψ1 + β|ψ1|q−2|ψ2|qψ1

|ψ2|2q−2ψ2 + β|ψ1|q |ψ2|q−2ψ2

)
(1.2)

where q, β are suitable parameters.
Observe that, for q = 2, the approximation in (1.2) becomes

(Vexψ) = −C

(
ψ1 βψ1

βψ2 ψ2

)( |ψ1|2
|ψ2|2

)
= −C

(
(|ψ1|2 + β|ψ2|2)ψ1

(β|ψ1|2 + |ψ2|2)ψ2

)
,

that is similar to the one applied by Slater in (1.1), with a different power of the electron density 
function which is also perturbed by the parameter β .
Considering ψ1 and ψ2 real functions, renaming them as u, v, and taking, for simplicity, C = 1, 
we get ⎧⎨⎩−�u + u + λφu,vu = |u|2q−2u + β|v|q |u|q−2u

−�v + v + λφu,vv = |v|2q−2v + β|u|q |v|q−2v
in R3, (Sλ,β )

where

φu,v(x) :=
∫

3

u2(y) + v2(y)

|x − y| dy ∈ D1,2(R3),
R
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where this last space is the closure of the test functions in the L2-norm of the gradient.
Observe that φu,v is the unique solution of

−�φ = 4π(u2 + v2) in R3.

Thus, system (Sλ,β ) can be also seen as a Schrödinger-Poisson type system (see e.g. [11]).
A particular case of system (Sλ,β), when λ = 0, leads to the local weakly coupled nonlinear 

Schrödinger system ⎧⎨⎩−�u + u = |u|2q−2u + β|v|q |u|q−2u

−�v + ω2 v = |v|2q−2v + β|u|q |v|q−2v
in R3, (1.3)

for 0 < ω2 ≤ 1, which has been intensively studied in the past fifteen years. Applying variational 
methods, the first works are authored by Lin and Wei [19] and also by Ambrosetti and Colorado 
[1], Maia, Montefusco, and Pellacci [21], Bartsch and Wang [2], Sirakov [29], then followed by 
an extensive literature presenting investigations of different aspects and variations of this prob-
lem.
In fact this system is obtained when looking for solitary wave solutions of two coupled nonlinear 
Schrödinger equations which model, for instance, binary mixtures of Bose-Einstein condensates 
or propagation of wave packets in nonlinear optics. In the present scenario, the self-interaction 
is attractive (self-focusing) and the interaction between the two components may be either at-
tractive (β > 0) or repulsive (β < 0). Many different and clever approaches have been provided 
in order to find ranges of parameter β for which a positive (ground state) solution (u, v) of the 
system is vectorial (namely having both nontrivial components) and so distinguish them from 
the semitrivial ones (u, 0) and (0, v). So far a remarkable amount of information has been made 
available on this matter, including the proof in [22] of a threshold β(ω, q, n) for existence or 
nonexistence of vector ground states for problem (1.3) in Rn.

The system above also arises as population dynamics are modeled and their associated 
reaction-diffusion equations in bounded or unbounded domains are studied using variational 
techniques; among many interesting works on this matter there are [6,7,32] and references 
therein. When, for instance, an analysis is performed of the limiting case with respect to a pa-
rameter β which describes interspecies competitions, going to plus or minus infinity, possible 
segregation states of two or more competing species are identified, leading to configurations 
where the populations occupy disjoint habitats.

In this paper we study the existence of solutions to problem (Sλ,β) in the unknowns (u, v) ∈
H := H 1(R3) × H 1(R3). In particular we are interested in nontrivial solutions, namely (u, v) ∈
H \ {0} := H \ {(0, 0)}.

Our approach in solving problem (Sλ,β) is variational. Indeed a C1 energy functional in H
can be defined such that its critical points give exactly the solutions of our system.

However in order to deal with compactness issues, we will work (except for the nonexistence 
result) in the radial setting and we will use the compact embedding of H 1

r (R3) into Lp(R3) for 
p ∈ (2, 6), see e.g. [3,33]. Then the functional will be restricted to Hr := H 1

r (R3) × H 1
r (R3) and 

the solutions will be found in Hr. The invariance of the functional under rotations and the Palais’ 
Principle of Symmetric Criticality [26] makes natural this constraint.

Actually we are interested in the existence of ground state solutions: with these terms we 
mean radial solutions whose energy is minimal among all the other radial ones.
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Such definition is motivated by the fact that for our system (Sλ,β), as well as for the corresponding 
scalar problem

−�u + u + λφuu = |u|2q−2u in R3, φu(x) :=
∫
R3

u2(y)

|x − y|dy, (1.4)

the classical Schwarz symmetrization or the polarization arguments (see [17,25]), that are enough 
to treat the nonlocal term, and so to prove the radial symmetry of the ground state solutions for 
the Choquard equation, are (or seem to be, respectively) not sufficient to guarantee the radial 
symmetry of our ground states. Indeed, in our case, as observed by Lieb in [17], the Riesz in-
equality implies that the energy increases when we pass to the symmetrized function.

In order to state our main result concerning the existence of ground state solutions for q ∈
(3/2, 3), their vectorial or semitrivial nature, and their asymptotic behavior with respect to the 
parameter β , let us first recall that in [28] it was proved that, for any λ > 0, the equation (1.4)
possesses a radial ground state solution among all the radial solutions which will be denoted 
hereafter with w ∈ H 1

r (R3).
Observe that, whenever a ground state of (Sλ,β) is semitrivial, then, necessarily, it is of the type 
(w, 0) or (0, w).

We have

Theorem 1.1. Let q ∈ (3/2, 3), λ > 0, and β ≥ 0. Then (Sλ,β ) has a radial ground state solution 
(uβ, vβ) �= (0, 0). Moreover:

(i) if β = 0, the ground state solution is semitrivial;
(ii) if β ∈ (0, 2q−1 − 1) and q ∈ [2, 3), the ground state solution is semitrivial;

(iii) if β ∈ (0, q − 1) and q ∈ (3/2, 2), the ground state solution is vectorial and

lim
β→0+ distH(Gβ,G0) = 0

where Gβ :={(uβ, vβ) ∈ Hr : (uβ, vβ) is a ground state of (Sλ,β )} and G0 :={(w, 0), (0, w)};
(iv) if

β ∈
{

[q − 1,+∞) for q ∈ (3/2,2),

(2q−1 − 1,+∞) for q ∈ [2,3),
(1.5)

the ground state (uβ, vβ) is vectorial and

lim
β→+∞(uβ,vβ) = (0,0) in Hr; (1.6)

(v) if β = 2q−1 − 1 and q ∈ [2, 3), system (Sλ,β ) admits both semitrivial and vectorial ground 
states.

Some remarks on our result are now in order.
The presence of the nonlocal Coulomb type coupling in (Sλ,β) implies several difficulties with 

respect to system like (1.3), in particular for what concerns the semitrivial or vectorial nature of 
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the ground states, which is, actually, the main goal of the paper.
Indeed system (1.3) when β = 0 or when we consider semitrivial solutions, reduces to single 
equation

−�u + u = |u|2q−2u in R3.

For such equation, well known results have been obtained about uniqueness of the positive solu-
tion, its nondegeneracy, its radial symmetry and exponential decay. These facts are used in the 
study of (1.3) (see [21,22]).
In our case, even for β = 0 the system remains coupled in the nonlocal term.
Moreover, even if, for semitrivial solutions, system (Sλ,β) reduces to a single equation, for such 
equation no result about uniqueness, nondegeneracy, and eventual symmetries of positive solu-
tion is known.
Finally, to deal with powers q ∈ (3/2, 3), following [28], we use a rescaling (see (2.11)) which 
generates different behaviors of the terms in the functionals but that anyway allows us to project 
any nontrivial couple (u, v) in a suitable manifold. Actually, for the simpler case q ∈ (2, 3), the 
usual projection on the Nehari manifold is enough.
Nevertheless, our analysis shows that the nature of the ground states depends on the local non-
linearity. Indeed our results are comparable with the ones in [22], even if they are obtained in a 
different way: we start from the existence of ground states and, using the maximum values of a 
suitable one variable function related to the local nonlinearity (see Lemma 2.4), we estimate the 
ground state energy level and construct also a particular family of ground states (see Lemma 3.7), 
that, in the particular case q = 2 and β = 1, gives infinitely many ground states.

Additionally, due to the symmetry in u and v of (Sλ,β ), it is easy to obtain nontrivial solutions 
with u = v (see Remark 2.2). For β large enough, such solutions are ground states (Theorem 6.1) 
and, for β small, they are not (Theorem 5.6).

Finally, the solutions we find are classical. Indeed, if (u, v) ∈ Hr, then φu,v ∈ W
2,3
loc (R3) and 

then it is C0,α
loc (R3). But then by bootstrap arguments u, v ∈ C

2,α
loc (R3) which in turn implies 

φu,v ∈ C
2,α
loc (R3). Moreover, by the Maximum Principle, every nontrivial component of a solution 

can be assumed strictly positive without loss of generality.
Of course our problem can be written using the equivalent complex notation ψ := u + iv. 

Observe that, with such a notation,∫
R3

u2(y) + v2(y)

|x − y| dy =
∫
R3

|ψ(y)|2
|x − y| dy,

depending only on |ψ |. For our scopes, especially in order to distinguish between semitrivial and 
vectorial ground states, in the analysis it should be necessary to use real and imaginary parts of 
ψ and so we will proceed using the vectorial notation (u, v).

Additionally, we prove also the following nonexistence result.

Theorem 1.2. In H ∩ (L2q(R3) ×L2q(R3)) ∩ (L∞
loc(R

3) ×L∞
loc(R

3)), system (Sλ,β ) has only the 
trivial solution if q ≥ 3 and no solution with fixed sign if q ∈ [1/2, 1].

Here, with fixed sign solution, we mean couples (u, v) where each component is strictly pos-
itive or negative.
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The paper is organized as follows.
In Section 2 we present few preliminaries in order to prove our results. In particular we recall 
some results in [28] that will be used to compare the ground state level of our functional (for 
example to study the asymptotic behavior). We give also the variational setting for our problem.
In Section 3 we prove the nonexistence result, Theorem 1.2, which is based on a Pohozaev 
identity associated to the problem. Then we give also the proof of the existence of a nontrivial 
ground state in Theorem 1.1.
Then item (i) is proved in Section 4, (ii) and (iii) are proved in Section 5, (iv) is proved in 
Section 6, and (v) in Section 7.
We complete Section 5 and Section 6 showing that some particular solutions arising from the 
study of the single equation (see Remark 2.2) are or not ground states (see Theorem 5.6 and 
Theorem 6.1, respectively).

Notations

• Unless otherwise stated, integrals will always be considered on the whole R3 with the 
Lebesgue measure.

• We denote with ‖ · ‖ the norm in H 1(R3) and with ‖ · ‖p the standard Lp− norm.
• We denote with εn a generic sequence which vanishes as n tends to infinity and with C a 

suitable positive constant that can vary from line to line.

Other notations will be introduced whenever needed.

2. Preliminary results

In order to prove our results, let us first recall some facts about (1.4). In [28] it was proved that 
for any λ > 0 and q ∈ (3/2, 3), equation (1.4) has a radial ground state solution w ∈ H 1

r (R3) \
{0}. It is found as a minimizer of the C1-functional

Iλ,0(u) := 1

2
‖∇u‖2

2 + 1

2
‖u‖2

2 + λ

4

∫
u2φu − 1

2q
‖u‖2q

2q, u ∈ H 1
r (R3)

on the constraint

N λ :=
{
u ∈ H 1

r (R3) : Jλ,0(u) = 0
}

, (2.1)

where

Jλ,0(u) := 3

2
‖∇u‖2

2 + 1

2
‖u‖2

2 + 3

4
λ

∫
φuu

2 − 4q − 3

2q
‖u‖2q

2q .

The set N λ is obtained as a linear combination of the Nehari identity

‖∇u‖2
2 + ‖u‖2

2 + λ

∫
φuu

2 − ‖u‖2q
2q = 0

and the Pohozaev identity
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1

2
‖∇u‖2

2 + 3

2
‖u‖2

2 + 5

4
λ

∫
φuu

2 − 3

2q
‖u‖2q

2q = 0.

Given u �≡ 0, consider the path

ζu(t) := t2u(t ·), t ≥ 0. (2.2)

Note that

Iλ,0(ζu(t)) = t3

2
‖∇u‖2

2 + t

2
‖u‖2

2 + λ

4
t3

∫
u2φu − t4q−3

2q
‖u‖2q

2q,

Jλ,0(ζu(t)) = 3

2
t3‖∇u‖2

2 + 1

2
t‖u‖2

2 + 3

4
λt3

∫
φuu

2 − 4q − 3

2q
t4q−3‖u‖2q

2q, (2.3)

and t �→ Iλ,0(ζu(t)) has a unique critical point, denoted with tu > 0 corresponding to its maxi-
mum. The elements of N λ are then all of type ζu(tu) due to the fact that

Jλ,0(ζu(t)) = d

dt
Iλ,0(ζu(t)).

In particular u ∈N λ if and only if tu = 1 and then

0 < Iλ,0(w) = inf
u∈N λ

Iλ,0(u) = inf
u∈H 1

r (R3)\{0}
Iλ,0(ζu(tu)) = inf

u∈H 1
r (R3)\{0}

max
t>0

Iλ,0(ζu(t)).

(2.4)

Remark 2.1. Of course (w, 0) and (0, w) are semitrivial solutions of our system (Sλ,β ) for any 
β and so, since Iλ,β(u, 0) = Iλ,β(0, u) = Iλ,0(u), they are necessarily ground state whenever the 
ground state is semitrivial.

For future reference we set

n := Iλ,0(w).

Moreover, the same arguments of [28] can be repeated for the equation

−�u + u + 2λφuu = (1 + β)|u|2q−2u in R3 (2.5)

where β ≥ 0, leading to the existence of a ground state solution zβ that minimizes the functional

I2λ,β(u) := I2λ,0(u) − β

2q
‖u‖2q

2q = 1

2
‖∇u‖2

2 + 1

2
‖u‖2

2 + λ

2

∫
φuu

2 − 1 + β

2q
‖u‖2q

2q

on the set of u ∈ H 1
r (R3) satisfying

J2λ,β(u) := 3‖∇u‖2
2 + 1‖u‖2

2 + 3
λ

∫
φuu

2 − 4q − 3
(1 + β)‖u‖2q

2q = 0.

2 2 2 2q
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Coming back to our system (Sλ,β), observe that it can be written as

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−�u + u + λφu = |u|2q−2u + β|v|q |u|q−2u

−�v + v + λφv = |v|2q−2v + β|u|q |v|q−2v

−�φ = 4π(u2 + v2)

in R3. (2.6)

Moreover ∫
R3

|∇φu,v|2 = 4π

∫
R3

(u2 + v2)φu,v (2.7)

from which the estimate follows

‖∇φu,v‖2 ≤ C
(
‖u‖2 + ‖v‖2

)
.

It is standard to see that the weak solutions of (Sλ,β) are characterized as the critical points of 
the C1 functional defined on H

Iλ,β(u, v) = 1

2
‖∇u‖2

2 + 1

2
‖u‖2

2 + 1

2
‖∇v‖2

2 + 1

2
‖v‖2

2 + λ

4

∫
(u2 + v2)φu,v

− 1

2q
(‖u‖2q

2q + ‖v‖2q
2q) − β

q

∫
|u|q |v|q .

Remark 2.2. Observe that, for every β ≥ 0 and u ∈ H 1(R3),

Iλ,β(u,u) = 2I2λ,β(u) (2.8)

and, (u, u) is a solution of (Sλ,β) if and only if u is a solution of (2.5).

If (u, v) is a solution of (Sλ,β), multiplying the first equation of the system by u and the 
second one by v we see that (u, v) ∈ H satisfies the Nehari type identities

‖∇u‖2
2 + ‖u‖2

2 + λ

∫
u2φu,v = ‖u‖2q

2q + β

∫
|u|q |v|q, (2.9)

‖∇v‖2
2 + ‖v‖2

2 + λ

∫
v2φu,v = ‖v‖2q

2q + β

∫
|u|q |v|q . (2.10)

Given (u, v) ∈ H \ {0}, we denote with γu,v : [0, +∞[→ H the curve

γu,v(t) := (t2u(t ·), t2v(t ·)). (2.11)

By a simple calculation we have that
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Iλ,β(γu,v(t)) = t3

2
(‖∇u‖2

2 + ‖∇v‖2
2) + t

2
(‖u‖2

2 + ‖v‖2
2) + λ

4
t3

∫
(u2 + v2)φu,v

− t4q−3

2q

(
‖u‖2q

2q + ‖v‖2q
2q + 2β

∫
|u|q |v|q

)
,

which will be useful in our arguments.
For future developments, we need the following results.

Lemma 2.3. Let μ, ν, σ > 0, p > 3, and consider the function fσ (t) := μt + νt3 − σ tp . Then

(a) fσ has a unique critical point tσ > 0 which corresponds to its maximum and there exists a 
unique Tσ > tσ such that fσ (Tσ ) = 0;

(b) lim
σ→+∞ fσ (tσ ) = 0;

(c) lim
σ→+∞Tσ = 0 and μ = lim

σ→+∞σTp−1
σ .

Proof. Property (a) is essentially [28, Lemma 3.3] and is trivial.
Let us prove (b). Since p > 3, then, necessarily, tσ → 0 as σ → +∞. Indeed, if there exists ̄t> 0
and a divergent sequence {σn} such that tσn > t̄, then

μ = pσnt
p−1
σn

− 3νt2σn
= t2σn

(pσnt
p−3
σn

− 3ν) > t̄2(pσnt̄
p−3 − 3ν) → +∞

giving a contradiction. Thus

fσ (tσ ) = tσ

(p − 1

p
μ + p − 3

p
νt2

σ

)
→ 0 as σ → +∞.

As for (c), since Tσ satisfies

μ = σTp−1
σ − νT2

σ (2.12)

we deduce, as in item (b), that Tσ → 0 as σ → +∞ and so, coming back to (2.12), we con-
clude. �

Now we state a fundamental tool that will allow us to distinguish the nature of the ground 
states pairs, identifying whether they are semitrivial or vectorial (see also Remark 3.8). Its proof 
is quite technical and involves simple analytical arguments. So we postpone it in the Appendix A.

Lemma 2.4. Let hβ(y) := yq + (1 − y)q + 2βyq/2(1 − y)q/2, y ∈ [0, 1], β ≥ 0 and q > 1.

(i) If β = 0, then h0(y) ≤ 1 and the equality holds only in the endpoints y = 0, 1.
(ii) If q ∈ (3/2, 2), then, for any fixed β > 0, there exists a unique yβ ∈ (0, 1/2] such that 

hβ(yβ) = hβ(1 − yβ) = maxy∈[0,1] hβ(y) > 1 and lim
β→0+ yβ = 0. Moreover yβ = 1/2 if and 

only if β ≥ q − 1.
(iii) If q ∈ [2, 3), then:

(a) for β ∈ (0, 2q−1 − 1), hβ(y) ≤ 1 and the equality holds just in the endpoints yβ = 0, 1;
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(b) for β = 2q−1 − 1, hβ(y) ≤ 1 and, in particular,

hβ(y) = 1 in

{
0,1/2,1 if q ∈ (2,3)

[0,1] if q = 2;

(c) β > 2q−1 −1, then hβ achieves its unique global maximum on yβ = 1/2 and hβ(1/2) >
1.

3. Existence and nonexistence results

In this section we prove the nonexistence result stated in Theorem 1.2 and the existence of a 
nontrivial radial ground state of (Sλ,β), i.e. the first part of Theorem 1.1.

3.1. A Pohozaev identity and the nonexistence result

As it is usual for elliptic equations, the solutions satisfy a suitable identity called Pohozaev 
identity. It can be obtained, at least formally, by the relation

d

dt
Iλ,β(ut , vt )

∣∣∣
t=1

= 0 where ut (x) := u(x/t).

In the next lemma we get it rigorously. The proof is indeed standard, however we revise the 
argument for the sake of completeness. In what follows BR stands for the ball centered in 0 ∈R3

and radius R > 0.

Lemma 3.1. If (u, v, φ) is a solution of (2.6) with (u, v) ∈ H ∩ (L2q(R3) × L2q(R3)) ∩
(L∞

loc(R
3) × L∞

loc(R
3)), with fixed sign if q ∈ [1/2, 1], then it satisfies the Pohozaev identity

1

2
(‖∇u‖2

2 + ‖∇v‖2
2) + 3

2
(‖u‖2

2 + ‖v‖2
2) + 5

4
λ

∫
(u2 + v2)φ

= 3

2q

(
‖u‖2q

2q + ‖v‖2q

2q + 2β

∫
|u|q |v|q

)
.

(3.1)

Proof. Let (u, v, φ) be a solution of (2.6). If q ∈ [1/2, 1], without loss of generality, we can 
assume u, v > 0.
Preliminarily we recall (see also [3, Proposition 2.1] and [8, Lemma 3.1]) that for any R > 0∫

BR

−�ux · ∇u = −1

2

∫
BR

|∇u|2 − 1

R

∫
∂BR

|x · ∇u|2 + R

2

∫
∂BR

|∇u|2, (3.2)

∫
BR

φux · ∇u = −1

2

∫
BR

u2 x · ∇φ − 3

2

∫
BR

φu2 + R

2

∫
∂BR

φu2, (3.3)

∫
g(u)x · ∇u = −3

∫
G(u) + R

∫
G(u), (3.4)
BR BR ∂BR
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∫
BR

|u|q−2u|v|qx · ∇u + |u|q |v|q−2vx · ∇v = − 3

q

∫
BR

|u|q |v|q + R

q

∫
∂BR

|u|q |v|q, (3.5)

where g : R →R is a continuous function with primitive G(s) =
s∫

0

g(τ)dτ .

Observe that all the previous integrals make sense due to the regularity of u, v, φ. In particular, 
since u ∈ L∞

loc(R), then �u ∈ W
2,p

loc (R3) for all p ≥ 1, the integral in the left hand side of (3.2)
is well defined.
Then, multiplying the first equation in (2.6) by x ·∇u, integrating on BR , and taking into account 
(3.2), (3.3), (3.4), (3.5), we get

1

2

∫
BR

|∇u|2 + 3

2

∫
BR

u2 + λ

2

∫
BR

u2 x · ∇φ + 3λ

2

∫
BR

φu2 − 3

2q

∫
BR

|u|2q

+ β

∫
BR

|v|q |u|q−2ux · ∇u = − 1

R

∫
∂BR

|x · ∇u|2 + R

2

∫
∂BR

|∇u|2 + R

2

∫
∂BR

u2

+ λR

2

∫
∂BR

φu2 − R

2q

∫
∂BR

|u|2q .

(3.6)

In a similar way, from the second equation in (2.6) we infer

1

2

∫
BR

|∇v|2 + 3

2

∫
BR

v2 + λ

2

∫
BR

v2 x · ∇φ + 3λ

2

∫
BR

φv2 − 3

2q

∫
BR

|v|2q

+ β

∫
BR

|u|q |v|q−2v x · ∇v = − 1

R

∫
∂BR

|x · ∇v|2 + R

2

∫
∂BR

|∇v|2 + R

2

∫
∂BR

v2

+ λR

2

∫
∂BR

φv2 − R

2q

∫
∂BR

|v|2q

(3.7)

and, from the third one, multiplying by x · ∇φ, we deduce

1

2

∫
BR

|∇φ|2 + 4π

∫
BR

(u2 + v2) x · ∇φ = − 1

R

∫
∂BR

|x · ∇φ|2 + R

2

∫
∂BR

|∇φ|2. (3.8)

Then, summing up (3.6) and (3.7), taking into account (3.8) and (3.5) we arrive at

1

2

∫
BR

(|∇u|2 + |∇v|2) + 3

2

∫
BR

(u2 + v2) − λ

16π

∫
BR

|∇φ|2 + 3λ

2

∫
BR

(u2 + v2)φ

− 3

2q

∫
(|u|2q + |v|2q + 2β|u|q |v|q)
BR
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= − 1

R

∫
∂BR

(|x · ∇u|2 + |x · ∇v|2) + R

2

∫
∂BR

(|∇u|2 + |∇v|2)

+ R

2

∫
∂BR

(u2 + v2) + λR

2

∫
∂BR

φ(u2 + v2) − R

2q

∫
∂BR

(|u|2q + |v|2q) + λ

8πR

∫
∂BR

|x · ∇φ|2

− Rλ

16π

∫
∂BR

|∇φ|2 − βR

q

∫
∂BR

|u|q |v|q .

Arguing as in [3, pag. 321], there exists a suitable sequence Rn → +∞ on which the right hand 
side above tends to zero. Thus, passing to the limit we deduce that

1

2
(‖∇u‖2

2 + ‖∇v‖2
2) + 3

2
(‖u‖2

2 + ‖v‖2
2) − λ

16π
‖∇φ‖2

2 + 3

2
λ

∫
(u2 + v2)φ

= 3

2q

(
‖u‖2q

2q + ‖v‖2q
2q + 2β

∫
|u|q |v|q

)
.

Hence, using (2.7), we achieve the conclusion. �
With the Pohozaev identity (3.1), we can show easily our nonexistence result. Indeed we have

Proof of Theorem 1.2. Let (u, v) ∈ H ∩ (L2q(R3) ×L2q(R3)) be a nontrivial solution of (Sλ,β)
for q ∈ [1/2, 1] ∪ [3, +∞[. Using the Nehari identities (2.9) and (2.10) and the Pohzaev identity 
(3.1) we have

0 = ‖∇u‖2
2 + ‖∇v‖2

2 + ‖u‖2
2 + ‖v‖2

2 + λ

∫
(u2 + v2)φu,v − ‖u‖2q

2q − ‖v‖2q
2q − 2β

∫
|u|q |v|q

=
(

1 − q

3

)
(‖∇u‖2

2 + ‖∇v‖2
2) + (1 − q)(‖u‖2

2 + ‖v‖2
2) +

(
1 − 5

6
q

)
λ

∫
(u2 + v2)φu,v,

which is strictly negative for q ≥ 3 or strictly positive for q ≤ 1 and so we reach a contradic-
tion. �
3.2. Existence of a radial ground state

Here we find a radial ground state solution for our system (Sλ,β). As we have stated in the 
Introduction, to get compactness we restrict ourselves to radial functions. Thus, from now on, we 
will consider Hr as functional space, even if several facts do not require symmetry assumptions.

We start showing that, as in [28, Lemma 2.1], the following properties hold.

Lemma 3.2. Let q ∈ (1, 3) and {(un, vn)} ⊂ Hr be such that (un, vn) ⇀ (u, v) in Hr as n → +∞. 
We have, as n → +∞,

φun,vn → φu,v in D1,2
r (R3), (3.9)∫

(u2
n + v2

n)φun,vn →
∫

(u2 + v2)φu,v, (3.10)
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∫
|un|q |vn|q →

∫
|u|q |v|q . (3.11)

Proof. Let us define on D1,2
r (R3) the linear and continuous operators

Tn(w) :=
∫

∇w∇φun,vn

(
= 4π

∫
(u2

n + v2
n)w

)
,

T (w) :=
∫

∇w∇φu,v

(
= 4π

∫
(u2 + v2)w

)
.

Then, due to the compact embedding of the radial functions we have

|Tn(w) − T (w)| ≤ 4π‖w‖6

(
‖u2

n − u2‖6/5 + ‖v2
n − v2‖6/5

)
≤ εn‖∇w‖2.

Hence Tn − T → 0 as operators on D1,2
r (R3), and by the Riesz Theorem this implies (3.9).

Convergence (3.10) follows from

φun,vn → φu,v in L6(R3) and u2
n + v2

n → u2 + v2 in L6/5(R3).

Finally, to get (3.11), we observe that, using again the compact embedding of the radial functions,

‖|un|q − |u|q‖2, ‖|vn|q − |v|q‖2 → 0.

Thus ∣∣∣ ∫ |un|q |vn|q − |u|q |v|q
∣∣∣ ≤

∫
|un|q

∣∣∣|vn|q − |v|q
∣∣∣ +

∫
|v|q

∣∣∣|un|q − |u|q
∣∣∣

≤ ‖un‖q

2q‖|vn|q − |v|q‖2 + ‖v‖q

2q‖|un|q − |u|q‖2 = εn,

concluding the proof. �
Let us consider now the Nehari-Pohozaev manifold

M := {
(u, v) ∈ Hr \ {0} : Jλ,β(u, v) = 0

}
where

Jλ,β(u, v) := 3

2
(‖∇u‖2

2 + ‖∇v‖2
2) + 1

2
(‖u‖2

2 + ‖v‖2
2) + 3

4
λ

∫
(u2 + v2)φu,v

− 4q − 3

2q

(
‖u‖2q

2q + ‖v‖2q

2q + 2β

∫
|u|q |v|q

)
.

Observe that the condition Jλ,β(u, v) = 0 can be obtained by a linear combination of the 
Nehari (2.9), (2.10) and Pohozaev (3.1) identities. Thus, M contains all nontrivial radial critical 
points of Iλ,β .
Moreover, the following simple result assures us that any couple (u, v) ∈ Hr \{0} can be uniquely 
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projected on M via γu,v (see its definition in (2.11)) and gives us a further property of such a 
projection.

Lemma 3.3. For any (u, v) ∈ Hr \ {0} there exists a unique tu,v > 0 such that γu,v(tu,v) ∈ M and

Iλ,β(γu,v(tu,v)) = max
t>0

Iλ,β(γu,v(t)). (3.12)

Proof. The existence and uniqueness of tu,v is an easy consequence of (a) in Lemma 2.3, since

Jλ,β(γu,v(t)) = 3

2
t3(‖∇u‖2

2 + ‖∇v‖2
2) + t

2
(‖u‖2

2 + ‖v‖2
2) + 3

4
λt3

∫
(u2 + v2)φu,v

− 4q − 3

2q
t4q−3

(
‖u‖2q

2q + ‖v‖2q
2q + 2β

∫
|u|q |v|q

)
and q > 3/2.
Moreover, since

Jλ,β(γu,v(t)) = t
d

dt
Iλ,β(γu,v(t)),

we have that tu,v is the unique strictly positive critical point of Iλ,β(γu,v(t)) and so, again by (a) 
in Lemma 2.3, we conclude. �

Now we are ready to find the ground state solutions of (Sλ,β) by minimizing the functional 
Iλ,β on M.

Proof of Theorem 1.1 (existence of a ground state). We divide the proof in several steps.
Step 1: M is bounded away from zero, i.e. (0, 0) /∈ ∂M.
Let (u, v) ∈ M. Since

2
∫

|u|q |v|q ≤ ‖u‖2q

2q + ‖v‖2q

2q ≤ C
(
‖u‖2 + ‖v‖2

)q

we deduce

1

2
(‖u‖2 + ‖v‖2) ≤ C

(
‖u‖2 + ‖v‖2

)q

,

so that there exists ρ > 0 such that ‖u‖2 + ‖v‖2 ≥ ρ > 0 and the conclusion holds.
Step 2: mβ := infM Iλ,β > 0.
For (u, v) ∈ M we set, for simplicity,⎧⎪⎨⎪⎩

a := ‖∇u‖2
2 + ‖∇v‖2

2, b := ‖u‖2
2 + ‖v‖2

2,

c := λ

∫
(u2 + v2)φu,v, d := ‖u‖2q

2q + ‖v‖2q
2q + 2β

∫
|u|q |v|q .

If k := Iλ,β(u, v), we have
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⎧⎪⎪⎨⎪⎪⎩
1

2
a + 1

2
b + 1

4
c − 1

2q
d = k

3

2
a + 1

2
b + 3

4
c − 4q − 3

2q
d = 0.

In terms of a, b, k the unknown c is given by

0 < c = 2
(4q − 3)k − (2q − 3)a − 2b(q − 1)

2q − 3
.

Then taking into account Step 1, we have

(2q − 3)ρ < (2q − 3)(a + b) < (2q − 3)a + 2(q − 1)b < (4q − 3)k, (3.13)

where ρ > 0 is the constant found at the end of the previous step, meaning that k is bounded 
away from zero.
Step 3: If {(un, vn)} is a minimizing sequence for Iλ,β on M, then it is bounded. Hence, up to 
subsequence, it weakly converges to some (uβ, vβ) in Hr.
Let {(un, vn)} ⊂ M such that kn := Iλ,β(un, vn) → mβ . Setting for simplicity⎧⎪⎨⎪⎩

an := ‖∇un‖2
2 + ‖∇vn‖2

2, bn := ‖un‖2
2 + ‖vn‖2

2,

cn := λ

∫
(u2

n + v2
n)φun,vn, dn := ‖un‖2q

2q + ‖vn‖2q

2q + 2β

∫
|un|q |vn|q,

(3.14)

arguing as in Step 2, see (3.13), we get

(2q − 3)(an + bn) < (4q − 3)kn → (4q − 3)mβ

and so the minimizing sequence {(un, vn)} is bounded.
Step 4: {(un, vn)} strongly converges to (uβ, vβ) in Hr. Then (uβ, vβ) ∈ M and it minimizes 
Iλ,β .
Here is the scenario in which we need the radial setting.
Observe that, by the previous step, it follows that

un ⇀ uβ, vn ⇀ vβ, in L2(R3) and in D1,2(R3) (3.15)

and, eventually passing to a suitable subsequence,

‖∇uβ‖2
2 ≤ lim

n
‖∇un‖2

2, ‖∇vβ‖2
2 ≤ lim

n
‖∇vn‖2

2, ‖uβ‖2
2 ≤ lim

n
‖un‖2

2, ‖vβ‖2
2 ≤ lim

n
‖vn‖2

2.

(3.16)
Maintaining the notations in (3.14), we define

a := lim
n

an , b := lim
n

bn , c := lim
n

cn , d := lim
n

dn,

where we are assuming that the limits exist (eventually passing to suitable subsequences) being 
{an}, {bn}, {cn}, {dn} bounded sequences (see the previous Step).
Observe also that, by Step 1,
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a + b > 0. (3.17)

Moreover, the relations

Iλ,β(un, vn) → mβ and Jλ,β(un, vn) = 0

give ⎧⎪⎪⎨⎪⎪⎩
1

2
a + 1

2
b + 1

4
c − 1

2q
d = mβ

3

2
a + 1

2
b + 3

4
c − 4q − 3

2q
d = 0.

(3.18)

Thus, by the second equation in (3.18) and (3.17) we get d > 0.
Hence, using an analogous notation as before for the pair (uβ, vβ), namely⎧⎪⎨⎪⎩

a := ‖∇uβ‖2
2 + ‖∇vβ‖2

2, b := ‖uβ‖2
2 + ‖vβ‖2

2,

c := λ

∫
(u2

β + v2
β)φuβ ,vβ , d := ‖uβ‖2q

2q + ‖vβ‖2q

2q + 2β

∫
|uβ |q |vβ |q,

(3.19)

by (3.16), we have

a ≤ a and b ≤ b. (3.20)

Observe that, due to Lemma 3.2 and to the compact embedding in the radial setting

c = c and d = d.

If a + b < a + b, then, taking into account that Jλ,β(un, vn) = 0, we have that Jλ,β(uβ, vβ) < 0, 
meaning that (uβ, vβ) /∈ M and that (uβ, vβ) �= (0, 0). This implies that a, b, c, d > 0 and, by 
(3.20), also a, b > 0.
Moreover, by Lemma 3.3 there exists a unique tuβ,vβ > 0 such that γuβ ,vβ (tuβ ,vβ ) ∈ M (see 
(2.11)).
Consider now, for t ≥ 0, the functions

f (t) = t3

2
a + t

2
b + t3

4
c − t4q−3

2q
d, f (t) = t3

2
a + t

2
b + t3

4
c − t4q−3

2q
d.

Note that

f (t) = Iλ,β(γuβ ,vβ (t)) and tf ′(t) = Jλ,β(γuβ ,vβ (t)).

The functions f and f have both a unique critical point corresponding to the global maximum 
(see (a) in Lemma 2.3). In particular, the global maximizer of f is tuβ ,vβ and, by (3.18), we 
deduce that f achieves the maximum in t = 1. Moreover, since we are assuming a + b < a + b, 
it holds f (t) < f (t) for t > 0. Hence γuβ,vβ (tuβ ,vβ ) ∈ M and
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Iλ,β(γuβ ,vβ (tuβ ,vβ )) = f (tuβ ,vβ ) < max
t≥0

f (t) = mβ,

which is a contradiction.
Hence, by (3.20), we infer a = a and b = b, so that, using (3.15), we get (un, vn) → (uβ, vβ) in 
Hr.
Step 5: (uβ, vβ) is a regular point of M, i.e. J ′

λ,β(uβ, vβ) �= 0.
Assume by contradiction that J ′

λ,β(uβ, vβ) = 0 so that we have⎧⎨⎩−3�uβ + uβ + 3λφuβ ,vβuβ − (4q − 3)
(|uβ |2q−2 + β|uβ |q−2|vβ |q)

uβ = 0

−3�vβ + vβ + 3λφuβ ,vβvβ − (4q − 3)
(|vβ |2q−2 + β|vβ |q−2|uβ |q)

vβ = 0.
(3.21)

Then, under the notations (3.19), we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2
a + 1

2
b + 1

4
c − 1

2q
d = mβ,

3

2
a + 1

2
b + 3

4
c − 4q − 3

2q
d = 0,

3a + b + 3c − (4q − 3)d = 0,

3

2
a + 3

2
b + 15

4
c − 3

4q − 3

2q
d = 0,

where the third equation is simply J ′
λ,β(uβ, vβ)[uβ, vβ ] = 0 and, finally, the fourth equation is 

the Pohozaev identity for (3.21). The solution of the above system is given by

a=− 4q − 3

4(2q − 3)
mβ, b=3

4q − 3

4(q − 1)
mβ, c=− 4q − 3

2(2q − 3)
mβ, d=− 3q

4(2q − 3)(q − 1)
mβ.

Since q ∈ (3/2, 3), then a < 0, which is impossible.
Step 6: I ′

λ,β(uβ, vβ) = 0.
Thanks to the Lagrange multiplier rule we know that, for some � ∈R,

I ′
λ,β(uβ,vβ) = �J ′

λ,β(uβ,vβ).

We want to show that � = 0.
By expliciting the above identity we get

− (3� − 1)�uβ + (� − 1)uβ + (3� − 1)λφuβ ,vβuβ

− ((4q − 3)� − 1)
[|uβ |2q−2 + β|uβ |q−2|vβ |q]

uβ = 0 (3.22)

and

− (3� − 1)�vβ + (� − 1)vβ + (3� − 1)λφuβ ,vβvβ

− ((4q − 3)� − 1)
[|vβ |2q−2 + β|vβ |q−2|uβ |q]

vβ = 0. (3.23)
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Now, multiplying (3.22) and (3.23) by uβ and vβ respectively, integrating, and, finally, summing 
up the two identities obtained, we get, using again the notations in (3.19),

(3� − 1)a + (� − 1)b + (3� − 1)c − ((4q − 3)� − 1)d = 0.

On the other hand, arguing as in Lemma 3.1, we can associate to (3.22) and (3.23) the Pohozaev 
identity

3� − 1

2
a + 3

2
(� − 1)b + 5

4
(3� − 1)c − 3

2q
((4q − 3)� − 1)d = 0.

Then a, b, c, d satisfy the system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2
a + 1

2
b + 1

4
c − 1

2q
d = mβ,

3

2
a + 1

2
b + 3

4
c − 4q − 3

2q
d = 0,

(3� − 1)a + (� − 1)b + (3� − 1)c − ((4q − 3)� − 1)d = 0,

3� − 1

2
a + 3

2
(� − 1)b + 5

4
(3� − 1)c − 3

2q
((4q − 3)� − 1)d = 0.

The determinant of the matrix of the coefficients is

−�(3� − 1)(q − 1)(2q − 3)

q
.

The assumptions on q imply that q − 1 �= 0 and 2q − 3 �= 0. Moreover, also � �= 1/3. Indeed, if 
it were � = 1/3, the third equation of the system above would be

−2

3
b − 2(2q − 3)

3
d = 0

which is impossible since b, d > 0. Thus, if it were also � �= 0, then the determinant would be 
different from zero, meaning that the system would have a unique solution. In particular

d = − 3q

4(q − 1)(2q − 3)
mβ < 0

which is impossible. Summing up it yields � = 0, concluding the proof of the Step. �
Remark 3.4. Without loss of generality, since (|uβ |, |vβ |) is also a solution at the level mβ , 
applying the Maximum Principle, we can assume that, whenever uβ, vβ are nontrivial, they are 
strictly positive.

Remark 3.5. For future reference, we observe that the statements of previous Steps 5 and 6 and 
the inequality
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0 < ‖uβ‖2 + ‖vβ‖2 ≤ 4q − 3

2q − 3
mβ,

which follows by (3.13) in Step 2, hold for any pair of ground states.

Moreover, as an immediate consequence of Theorem 1.1 what we have just seen we can prove 
the following further result.

Corollary 3.6. Let (uβ, vβ) ∈ Hr \ {0} be a ground state found in Theorem 1.1. We have that

mβ = Iλ,β(γuβ ,vβ (1)) = inf
(u,v)∈Hr\{0} max

t>0
Iλ,β(γu,v(t))

Proof. By Lemma 3.3 we have that, for every (u, v) ∈ Hr \ {0},

mβ = min
(u,v)∈M

Iλ,β(u, v) ≤ Iλ,β(γu,v(tu,v)) = max
t>0

Iλ,β(γu,v(t)).

Then, passing to the infimum on (u, v) ∈ Hr \ {0}, we get

mβ ≤ inf
(u,v)∈Hr\{0} max

t>0
Iλ,β(γu,v(t)) ≤ max

t>0
Iλ,β(γuβ ,vβ (t)) = Iλ,β(γuβ ,vβ (1)) = mβ

concluding the proof. �
We conclude this section showing a further interesting property.
By Remark 3.4, in polar form the ground state (uβ, vβ) can be written as

(uβ,vβ) = (�β cosϑβ,�β sinϑβ), �2
β = u2

β + v2
β > 0, ϑβ = ϑβ(x) ∈ [0,π/2]. (3.24)

Note that whenever the ground state is vectorial, then ϑβ ∈ (0, π/2), while for semitrivial 
ground states it is ϑβ ≡ 0 or ϑβ ≡ π/2.

The next lemma shows how, starting from (uβ, vβ) we can obtain a convenient ground state 
with the additional property of having as angular coordinate a constant function θβ .
By Lemma 2.4, let yβ = cos2 θβ ∈ [0, 1/2] be a maximum point of hβ .

Lemma 3.7. For β ≥ 0, there exists tβ > 0 such that γ�β cos θβ ,�β sin θβ (tβ) ∈ M and

mβ = Iλ,β(γ�β cos θβ ,�β sin θβ (tβ)). (3.25)

In particular γ�β cos θβ ,�β sin θβ (tβ) is a ground state solution.

Proof. The conclusion will be achieved showing that the projection of (�β cos θβ, �β sin θβ) in 
M reaches the ground state level.
Since (�β cos θβ, �β sin θβ) ∈ Hr \ {0}, by Lemma 3.3 there exists a unique tβ > 0 such that

γ�β cos θβ ,�β sin θβ (tβ) ∈ M.

Let us show it is at the ground state level. Observe that
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mβ = inf
(u,v)∈Hr\{0} max

t>0
Iλ,β(γu,v(t)) ≤ max

t>0
Iλ,β(γ�β cos θβ ,�β sin θβ (t)) = Iλ,β(γ�β cos θβ ,�β sin θβ (tβ)).

Moreover, being yβ = cos2 θβ a maximum point of hβ in [0, 1/2],

u
2q
β + v

2q
β + 2βu

q
βv

q
β = hβ(cos2 ϑβ)�

2q
β ≤ hβ(yβ)�

2q
β .

Then, since

‖∇uβ‖2
2 + ‖∇vβ‖2

2 = ‖�β∇ϑβ‖2
2 + ‖∇�β‖2

2 ≥ ‖∇�β‖2
2,

for every t > 0,

Iλ,β(γ�β cos θβ ,�β sin θβ (t)) = t3

2
‖∇�β‖2

2 + t

2
‖�β‖2

2 + λ

4
t3

∫
φ�β �2

β − t4q−3

2q
hβ(yβ)‖�β‖2q

2q

≤ t3

2
‖∇�β‖2

2 + t

2
‖�β‖2

2 + λ

4
t3

∫
φ�β �2

β

− t4q−3

2q

∫ (
u

2q
β + v

2q
β + 2βu

q
βv

q
β

)
≤ Iλ,β(γuβ ,vβ (t)).

Thus, by Lemma 3.3,

Iλ,β(γ�β cos θβ ,�β sin θβ (tβ)) ≤ Iλ,β(γuβ ,vβ (tβ)) ≤ mβ,

concluding the proof. �
Remark 3.8. Whenever max[0,1] hβ > 1, then yβ ∈ (0, 1/2] and Lemma 3.7 gives a vectorial 
ground state.

4. The case β = 0

In this section we prove item (i) of Theorem 1.1: if β = 0, each ground state solution (u0, v0)

of (Sλ,β ) is semitrivial.
Consider system (Sλ,β ) for β = 0, namely{

−�u + u + λφu,vu = |u|2q−2u

−�v + v + λφu,vv = |v|2q−2v
in R3. (4.1)

Of course (w, 0) and (0, w), where w is a ground state of (1.4) obtained in [28] (see also Sec-
tion 2), are solutions of (4.1). Since for every u ∈ H 1

r (R3), we have that

Iλ,0(u) = Iλ,0(u,0) = Iλ,0(0, u),

then, by (2.4),
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n= Iλ,0(w) = Iλ,0(w,0) = Iλ,0(0,w) = inf
u∈H 1

r (R3)\{0}
max
t>0

Iλ,0(ζu(t),0),

where the path ζu has been defined in (2.2).
Moreover

m0 ≤ n. (4.2)

First we prove that the ground state level of the two variables functional Iλ,0 is the same of 
the ground state level of the one variable functional Iλ,0.

Lemma 4.1. m0 = n.

Proof. If we use the polar coordinates for the couples (u, v), namely we write

(u, v) = (� cosϑ,� sinϑ) where �2 = u2 + v2 and ϑ = ϑ(x) ∈ [0,2π],
we have that

‖∇u‖2
2 + ‖∇v‖2

2 = ‖�∇ϑ‖2
2 + ‖∇�‖2

2

and, by (i) in Lemma 2.4,

‖u‖2q
2q + ‖v‖2q

2q =
∫

�2q
(

cos2q ϑ + sin2q ϑ
)

≤ ‖�‖2q
2q .

Then, for every t > 0,

Iλ,0(γu,v(t)) ≥ t3

2
‖�∇ϑ‖2

2 + t3

2
‖∇�‖2

2 + t

2
‖�‖2

2 + λ

4
t3

∫
φ��2 − t4q−3

2q
‖�‖2q

2q ≥ Iλ,0(ζ�(t)).

(4.3)
Hence, (4.3), (2.4), and (4.2) imply

m0 = inf
(u,v)∈Hr\{0} max

t>0
Iλ,0(γu,v(t)) ≥ inf

�∈H 1
r (R3)\{0}

max
t>0

Iλ,0(ζ�(t),0) = n,

concluding the proof. �
Now we are ready to show the main goal of this section.

Proof of (i) of Theorem 1.1. Assume by contradiction that there exists a vectorial ground state 
(u, v). By Remark 3.4, without loss of generality we can assume that u, v > 0. Thus, using as 
before the polar coordinates, we can write

(u, v) = (� cosϑ,� sinϑ), with �2 = u2 + v2 and ϑ = ϑ(x) ∈ (0,π/2).

Then, using (i) in Lemma 2.4, we have that cos2q ϑ + sin2q ϑ < 1, and so by (3.12) and arguing 
as in (4.3), we get that, for all t > 0,
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m0 ≥ Iλ,0(γu,v(t)) > Iλ,0(ζ�(t),0).

Then

m0 > max
t>0

Iλ,0(ζ�(t),0) ≥ inf
�∈H 1

r (R3)\{0}
max
t>0

Iλ,0(ζ�(t),0) = n,

which is a contradiction with Lemma 4.1. �
5. The case β > 0 and small

In this section we consider

β ∈
{

(0,2q−1 − 1) for q ∈ [2,3) as in (ii) of Theorem 1.1,

(0, q − 1) for q ∈ (3/2,2) as in (iii) of Theorem 1.1.

Let us start with the proof of item (ii) of Theorem 1.1.
Preliminarily, as in Section 4, we prove

Lemma 5.1. If β ∈ (0, 2q−1 − 1] and q ∈ [2, 3), then mβ = n.

Proof. Since for any u ∈ H 1
r (R3) it holds

Iλ,0(u) = Iλ,β(u,0) = Iλ,β(0, u), (5.1)

then

n = Iλ,0(w) = inf
u∈H 1

r (R3)\{0}
max
t>0

Iλ,β(ζu(t),0) ≥ inf
(u,v)∈Hr\{0} max

t>0
Iλ,β(γu,v(t)) = mβ.

Moreover, introducing the polar coordinates as in Lemma 4.1 and using (a) and (b) of (iii) in 
Lemma 2.4 we get

‖u‖2q

2q + ‖v‖2q

2q + 2β

∫
|u|q |v|q =

∫
�2q

(
cos2q ϑ + sin2q ϑ + 2β| cosϑ |q(1 − sin2 ϑ)q/2

)
≤ ‖�‖2q

2q .

Thus, arguing as in Lemma 4.1, we arrive at Iλ,β(γu,v(t)) ≥ Iλ,0(ζρ(t)) and so mβ ≥ n. �
As an immediate consequence we can conclude as follows.

Proof of (ii) in Theorem 1.1. Hence for β ∈ (0, 2q−1 −1), the proof is completely analogous to 
that one of item (i) of Theorem 1.1, using (a) of (iii) in Lemma 2.4 instead if (i). �

Let us address now (iii) of Theorem 1.1. We first show that the ground state (uβ, vβ) is vecto-
rial and then that it converges to a semitrivial solution as β → 0+.

First we show a preliminary property that we will use also in the next section, since the 
conclusion holds whenever there exists a point where hβ introduced in Lemma 2.4 is greater 
than 1.
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Lemma 5.2. If β ∈ (0, q − 1) and q ∈ (3/2, 2), then

mβ < n. (5.2)

Proof. In virtue of (ii) of Lemma 2.4, let θβ ∈ (0, π/2) be defined by yβ = cos2 θβ ∈ (0, 1/2)

and consider the vectorial function

(̃u, ṽ) := (w cos θβ,w sin θβ) ∈ Hr \ {0}.

A simple computation shows that

‖∇ũ‖2
2 + ‖∇ṽ‖2

2 = ‖∇w‖2
2

‖ũ‖2
2 + ‖̃v‖2

2 = ‖w‖2
2,∫

(̃u2 + ṽ2)φũ,̃v =
∫

φww2,

‖ũ‖2q

2q + ‖̃v‖2q

2q + 2β

∫
|̃u|q |̃v|q =

(
cos2q θβ + sin2q θβ + 2β cosq θβ sinq θβ

)
‖w‖2q

2q

=
(
y

q
β + (1 − yβ)q + 2βy

q/2
β (1 − yβ)q/2

)
‖w‖2q

2q

> ‖w‖2q
2q,

where the last inequality is due again to (ii) of Lemma 2.4.
Consequently, recalling (5.1), for any t > 0 we have

Iλ,0(ζw(t)) = Iλ,β(γw,0(t)) = t3

2
‖∇w‖2

2 + t

2
‖w‖2

2 + λ

4
t3

∫
φww2 − t4q−3

2q
‖w‖2q

2q

>
t3

2
(‖∇ũ‖2

2 + ‖∇ṽ‖2
2) + t

2
(‖ũ‖2

2 + ‖̃v‖2
2) + λ

4
t3

∫
φũ,̃v (̃u

2 + ṽ2)

− t4q−3

2q

(
‖ũ‖2q

2q + ‖̃v‖2q
2q + 2β

∫
|̃u|q |̃v|q

)
= Iλ,β(γũ,̃v(t)).

Passing to the maximum on t > 0, since both maxima are achieved, and recalling that t �→
Iλ,0(ζw(t)) achieves its maximum in t = 1 being w ∈N λ (see (2.1)), we can write

n = Iλ,0(w) > max
t>0

Iλ,β(γũ,̃v(t)) ≥ inf
(u,v)∈Hr\{0} max

t>0
Iλ,β(γu,v(t)) = mβ

concluding the proof. �
We point out that, in contrast to the proof of Lemma 3.7, where we need to take exactly yβ , 

here in Lemma 5.2 it is enough to take an arbitrary point where hβ is greater than one.
As an immediate consequence of Lemma 5.2 we have
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Proof of (iii) in Theorem 1.1 (vectorial ground state). If the ground state were for instance of 
type (uβ, 0), then, recalling (5.1), we would have

mβ = Iλ,β(uβ,0) = Iλ,0(uβ) ≥ n

contradicting (5.2). �
As observed in Remark 3.8, by Lemma 3.7, if yβ = cos2 θβ ∈ (0, 1/2] is the maximum point 

of hβ , we have

Corollary 5.3. If β ∈ (0, q − 1) and q ∈ (3/2, 2), then there exists tβ > 0 such that
γ�β cos θβ ,�β sin θβ (tβ) is a vectorial ground state.

Now we show the asymptotic behavior as β → 0+ of the vectorial ground state solutions 
found in (iii) of Theorem 1.1. As in the proof of (i) of Theorem 1.1, we assume without loss of 
generality that uβ and vβ are positive.

Arguing as in Step 1 and Step 2 of the Proof of Theorem 1.1, we can get for β > 0 in a 
bounded set a uniform lower bound for the ground states levels mβ .
However, in what follows, we give an estimate of such a lower bound depending on the energy 
level of the ground state g of

−�u + u = |u|2q−2u in R3

(see e.g. [36]).
To this aim let us introduce another limit problem which will be useful for our purpose: system 
(Sλ,β ) with λ = 0, namely⎧⎨⎩−�u + u = |u|2q−2u + β|v|q |u|q−2u

−�v + v = |v|2q−2v + β|u|q |v|q−2v
in R3. (5.3)

Let (̂uβ, ̂vβ) ∈ Hr be the vectorial, positive and radial ground state solution, see [22, Corollary 
1], which exists for any β > 0 and q ∈ (3/2, 2). In our notations, the energy functional related to 
(5.3) is I0,β . Since

I0,β(γûβ ,̂vβ
(t)) → −∞ as t → +∞,

there exists aβ > 0 such that

γûβ ,̂vβ
∈ �β := {

η ∈ C([0, aβ ],Hr) : I0,β(η(0)) = 0, I0,β(η(aβ)) < 0)
}

and we have the usual minimax characterization of the ground state

inf
η∈�β

max
t>0

I0,β(η(t)) = I0,β (̂uβ, v̂β), (5.4)

see e.g. [21, Lemma 3.2].
The next lemma allows us to get the desired lower bound.
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Lemma 5.4. If 0 < β ≤ 1, then

mβ ≥ 2
q−2
q−1 I0,β(g,0) = 2

q−2
q−1 I0,0(g).

Proof. By Lemma 3.3 and (5.4) it holds

mβ = max
t>0

Iλ,β(γuβ ,vβ (t)) ≥ max
t>0

I0,β(γuβ ,vβ (t)) ≥ inf
η∈�β

max
t>0

I0,β(η(t)) = I0,β (̂uβ, v̂β).

On the other hand, by [22, Proof of Lemma 4] we know

I0,β (̂uβ, v̂β) ≥
(

inf
k>0

(1 + k2)q

1 + k2q + 2βkq

) 1
q−1

I0,β(g,0).

If we set

ξβ(k) := (1 + k2)q

1 + k2q + 2βkq
,

we have that, if β1 < β2, then, for every k > 0, ξβ1(k) > ξβ2(k). Hence, if β ∈ (0, 1], it holds

ξβ(k) ≥ ξ1(k) ≥ ξ1(1) = 2q−2

and the conclusion follows. �
To prove the asymptotic behavior of the ground states (uβ, vβ), we will show first the asymp-

totic behavior of the ground state levels. However in order to do that, we will work with another 
family of ground states different from (uβ, vβ).

Now we are ready to prove the asymptotic behavior as β → 0+ of the ground state levels.

Proposition 5.5. If q ∈ (3/2, 2), as β → 0+, the family of radial ground state solutions of (Sλ,β)
found in Lemma 3.7 converges in Hr to a semitrivial solution of (Sλ,β ), whose nontrivial compo-
nent is a radial ground state solution of (1.4). Moreover

lim
β→0+ mβ = n. (5.5)

Proof. Using the notations of Lemma 3.7, let us set

uβ := �̃β cos θβ, vβ := �̃β sin θβ, �̃β := ζρβ (tβ) = t2
β�β(tβ ·).

By Remark 3.5 and (5.2) we deduce that

(uβ,vβ) ⇀ (u,v) in Hr as β → 0+.

Since ‖(uβ, vβ)‖ = ‖̃�β‖ and, by Lemma 2.4, limβ→0+ θβ = π/2, we see that uβ → 0 in 
H 1(R3). Thus u = 0.
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We claim that v �= 0.
By the Sobolev embeddings and the Strauss Lemma, uβ → 0 and �̃β → v in Lp(R3) for all 
p ∈ (2, 6). Hence, using Lemma 5.4, (3.25), and (ii) in Lemma 2.4,

0 < 2
q−2
q−1 I0,0(g) ≤ Iλ,β(uβ,vβ) = Iλ,β(uβ,vβ) − 1

2
I ′
λ,β(uβ,vβ)[uβ,vβ ]

= −λ

4

∫
φ�̃β �̃2

β + q − 1

2q
hβ(yβ)‖̃�β‖2q

2q

≤ q − 1

2q
hβ(yβ)‖̃�β‖2q

2q −→ q − 1

2q
‖v‖2q

2q

getting the claim.
Now we prove that v is a solution of (1.4).
We know that (uβ, vβ) satisfies, for any ϕ ∈ H 1

r (R3),∫
∇vβ∇ϕ +

∫
vβϕ + λ

∫
φuβ ,vβ vβϕ −

∫
|vβ |2q−2vβϕ − β

∫
|uβ |q|vβ |q−2vβϕ = 0.

Then passing to the limit as β → 0+, using also that, by Lemma 3.2,∣∣∣∣∫ vβϕφuβ ,vβ −
∫

vϕφu,v

∣∣∣∣ ≤ (‖φuβ ,vβ ‖6‖vβ − v‖12/5 + ‖φuβ ,vβ − φu,v‖6‖v‖12/5
)‖ϕ‖12/5 → 0,

we infer ∫
∇v∇ϕ +

∫
vϕ + λ

∫
vϕφu,v −

∫
|v|2q−2vϕ = 0

which means that v solves (1.4).
To show the strong convergence vβ → v in H 1

r (R3), observe that, for all ψ ∈ H 1
r (R3),

I ′
λ,β(uβ,vβ)[0,ψ] = 0.

Then, choosing ψ = vβ − v, we get∫
∇vβ∇(vβ − v)+

∫
vβ(vβ − v) + λ

∫
vβ(vβ − v)φuβ ,vβ

=
∫

|vβ |2q−2vβ(vβ − v) + β

∫
|uβ |q |vβ |q−2vβ(vβ − v).

Passing to the limit as β → 0+ in the above identity, we get ‖vβ‖2 → ‖v‖2, and so the strong 
convergence holds.
Finally, using (5.2), we infer

n > mβ = Iλ,β(uβ,vβ) → Iλ,0(v),

and then v is a ground state solution of (1.4) and (5.5) follows. �
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Hence we can conclude.

Proof of (iii) of Theorem 1.1 (asymptotic behavior). By Remark 3.5 and (5.2) we have that 
{(uβ, vβ)} is bounded and then weakly convergent in Hr to some (u∗, v∗).
First we prove that, actually, the convergence is strong.
Indeed, since for every ψ ∈ H 1

r (R3), I ′
λ,β(uβ, vβ)[ψ, 0] = 0, then, choosing ψ = uβ −u∗ we get, 

arguing as in the proof of Lemma 5.5, that uβ → u∗ in H 1
r (R3). Analogously we get vβ → v∗ in 

H 1
r (R3) and, arguing as in Lemma 5.5, we see that (u∗, v∗) satisfies (4.1).

On the other hand, by (5.5) and the strong convergence of {(uβ, vβ)} we arrive at

Iλ,0(u
∗,v∗) = n > 0. (5.6)

Thus (u∗, v∗) ∈Hr\{0}.
Let us see now that (u∗, v∗) is semitrivial.
Using Lemma 4.1 and (5.6), we get

n= m0 ≤ Iλ,0(u
∗,v∗) = n.

Hence, (u∗, v∗) is a ground state for (4.1), and so, by item (i) of Theorem 1.1, is semitrivial. �
We conclude this section with a further result about a particular solution of our system.

Let us recall that, as observed in Remark 2.2, (zβ, zβ), where zβ is a ground state solution of 
(2.5), is a solution of (Sλ,β). Thus, in view of (ii) of Theorem 1.1, for q ∈ [2, 3), such a solution 
is not a ground state. The same holds also for q ∈ (3/2, 2). More precisely we have

Theorem 5.6. If β is small enough, the couple (zβ, zβ) is not a ground state solution of (Sλ,β).

Let us start with two preliminary lemmata concerning the monotonicity of the ground states 
levels for a single equation of type (2.5) with respect to the parameters λ and β . Their proofs use 
standard arguments.

Lemma 5.7. Let 0 < λ1 < λ2 and wi , i = 1, 2 be ground state solutions of

−�u + u + λiφuu = |u|2q−2u, in R3, i = 1,2.

Then

Iλ1,0(w1) < Iλ2,0(w2).

Proof. Since

0 = Jλ2,0(w2) = Jλ1,0(w2) + 3

4
(λ2 − λ1)

∫
w2

2φw2 > Jλ1,0(w2) = Jλ1,0(ζw2(1))

and by (2.3) and (a) in Lemma 2.3, we see that there exists t1 ∈ (0, 1) such that

Jλ ,0(ζw (t1)) = 0,
1 2
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namely, ζw2(t1) ∈ N λ1 .
Therefore

Iλ1,0(w1) ≤ Iλ1,0(ζw2(t1)) < Iλ2,0(ζw2(t1)) < Iλ2,0(ζw2(1)) = Iλ2,0(w2),

concluding the proof. �
Lemma 5.8. For 0 ≤ β1 < β2, let zβ1, zβ2 be respective ground states of (2.5). Then

0 < I2λ,β2(zβ2) < I2λ,β1(zβ1).

Proof. We know that

0 = J2λ,β1(zβ1)

= 3

2
‖∇zβ1‖2

2 + 1

2
‖zβ1‖2

2 + 3

2
λ

∫
φzβ1

z2
β1

− 4q − 3

2q
(1 + β1)‖zβ1‖2q

2q

>
3

2
‖∇zβ1‖2

2 + 1

2
‖zβ1‖2

2 + 3

2
λ

∫
φzβ1

z2
β1

− 4q − 3

2q
(1 + β2)‖zβ1‖2q

2q

= J2λ,β2(zβ1).

Hence, by (2.3) and (a) in Lemma 2.3, there exists tβ1 ∈ (0, 1) such that

J2λ,β2(ζzβ1
(tβ1)) = 0.

Then,

0 < I2λ,β2(zβ2) ≤ I2λ,β2(ζzβ1
(tβ1)) < I2λ,β1(ζzβ1

(tβ1)) < I2λ,β1(ζzβ1
(1)) = I2λ,β1(zβ1)

and the proof is complete. �
In particular Lemma 5.8 says that, if β > 0,

I2λ,β(zβ) < I2λ,0(z0). (5.7)

Then we can prove the desired result.

Proof of Theorem 5.6. By Lemma 5.7, with λ1 = λ, λ2 = 2λ, w1 = w, w2 = z0, and (2.8), we 
deduce

n = Iλ,0(w) < I2λ,0(z0) < 2I2λ,0(z0) = Iλ,0(z0, z0). (5.8)

Let now {βn} ⊂ (0, +∞) be such that βn → 0+ and βn+1 < βn and kβn := I2λ,βn(zβn) > 0.
By Lemma 5.8 we know that {kβn} is bounded and, by (5.7),

0 < kβ < kβn < I2λ,0(z0). (5.9)
0
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Arguing for the single equation (2.5) as in (3.13) and Remark 3.5, we get that {zβn} is bounded 
in H 1

r (R3) and we know also that I ′
2λ,βn

(zβn) = 0. Thus

I2λ,0(zβn) = kβn + βn

2q
‖zβn‖2q

2q = kβn + εn

and

‖I ′
2λ,0(zβn)‖ = sup

‖v‖≤1

∣∣∣∣I ′
2λ,βn

(zβn)[v] + βn

∫
|zβn |2q−2zβnv

∣∣∣∣ ≤ Cβn‖zβn‖2q−1 = εn,

namely that {zβn} is a (PS) sequence for I2λ,0.
Arguing as in the Proof of Proposition 5.5, we show that zβn → w in H 1

r (R3), I ′
2λ,0(w) = 0, and, 

by (5.9), w �= 0.
Moreover,

kβn = I2λ,0(zβn) − βn

2q
‖zβn‖2q

2q → I2λ,0(w).

Hence, by (2.8) and (5.8),

Iλ,βn(zβn, zβn) = 2kβn → 2I2λ,0(w) ≥ 2I2λ,0(z0) = Iλ,0(z0, z0) > n.

Thus, by Proposition 5.5, we get that for β small (zβ, zβ) cannot be a ground state. �
6. The case β large

In this section we study the vectorial nature of the ground states (uβ, vβ) of (Sλ,β ) for β large, 
namely satisfying (1.5), and we show that such a ground state vanishes as β → +∞. Indeed we 
have

Proof of (iv) of Theorem 1.1. The fact that the ground state solution has to be vectorial, follows 
taking into account that, by (ii) and (c) of (iii) in Lemma 2.4, max[0,1] hβ > 1. Then arguing as 
in Lemma 5.2, this implies that n > mβ and so we can conclude as in the proof of (ii) of Theo-
rem 1.1.
To prove (1.6), let us fix u ∈ H 1

r (R3) \ {0} and let Tβ > 0 be the real number such that 
Jλ,β(γu,u(Tβ)) = 0, namely such that γu,u(Tβ) ∈ M. By (c) in Lemma 2.3 we have that

lim
β→+∞Tβ = 0 and lim

β→+∞
4q − 3

q
(1 + β)‖u‖2q

2qT
4q−4
β = ‖u‖2

2.

Thus

0 < mβ ≤ Iλ,β(γu,u(Tβ))

= T 3
β ‖∇u‖2

2 + Tβ‖u‖2
2 + λT 3

β

∫
φuu

2 − T
4q−3
β

(1 + β)‖u‖2q
2q
q
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= Tβ‖u‖2
2 + 1

3

[
4q − 3

q
(1 + β)T

4q−3
β ‖u‖2q

2q − Tβ‖u‖2
2

]
− T

4q−3
β

q
(1 + β)‖u‖2q

2q

= 2

3
Tβ

(
‖u‖2

2 − 2q − 3

q
(1 + β)T

4q−4
β ‖u‖2q

2q

)
→ 0

as β → +∞.
Hence we conclude by Remark 3.5. �

Now we show that, actually, a ground state can be taken with the two components equal. 
Indeed

Theorem 6.1. If β satisfies (1.5), then

mβ = Iλ,β(zβ, zβ),

where zβ is a ground state solution of (2.5).

Let (uβ, vβ) be a vectorial ground state just found and let us consider its polar coordinates 
as in (3.24). Taking into account Lemma 3.7 and so Remark 3.8, using (ii) and (c) of (iii) in 
Lemma 2.4, we have

Lemma 6.2. If β satisfies (1.5), then there exists tβ > 0 such that γ
�β/

√
2,�β/

√
2(tβ) ∈ M and

mβ = Iλ,β(γ
�β/

√
2,�β/

√
2(tβ)).

In particular γ
�β/

√
2,�β/

√
2(tβ) is a ground state solution.

Thus we are ready to complete the proof.

Proof of Theorem 6.1. By Lemma 6.2, there exists uβ ∈ H 1
r (R3) \ {0} such that

mβ = Iλ,β(uβ,uβ).

Thus, by Remark 2.2, we infer

mβ = 2I2λ,β(uβ) ≥ 2I2λ,β(zβ) = Iλ,β(zβ, zβ) ≥mβ

concluding the proof. �
7. The particular case β = 2q−1 − 1 and q ∈ [2, 3)

In this particular case we can argue as in Section 5 and Section 6 to get both (semitrivial and 
vectorial) types of ground states.
By Lemma 5.1, being mβ = n, we get that

Iλ,β(w,0) = Iλ,β(0,w) = mβ
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and so (w, 0) and (0, w) are semitrivial ground states.
Of course in this case we cannot proceed as in the proof of item (i) of Theorem 1.1 since 0 and 
1 are not the only maximisers of hβ and so, the existence of further maximisers gives vectorial 
ground states too (see (b) of item (iii) in Lemma 2.4).
Indeed Lemma 3.7 applies with yβ = 1/2, and so θβ = π/4. Hence we get that there exists tβ > 0
such that γ

�β/
√

2,�β/
√

2(tβ) ∈ M,

mβ = Iλ,β(γ
�β/

√
2,�β/

√
2(tβ)),

and γ
�β/

√
2,�β/

√
2(tβ) is a ground state solution.

More in particular, if q = 2, hβ ≡ 1. Then we can take an arbitrary yβ ∈ (0, 1), obtaining that 
there exists tβ > 0 such that γ�β cos θβ ,�β sin θβ (tβ) is a ground state solution.
Finally we observe that, as a corollary of this last property, arguing as in Theorem 6.1, we have 
also that

mβ = Iλ,β(zβ, zβ).
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Appendix A. Proof of Lemma 2.4

In this Appendix we present the details of the proof of Lemma 2.4.
First observe that hβ is even with respect to the line y = 1/2.
Since h0 is strictly decreasing in [0, 1/2], property (i) is trivial.
Now let us consider β > 0. The proof when q = 2 is trivial. Thus, let us focus on (iii) for q ∈
(2, 3) and (ii).
Observe that, for any fixed β > 0, we have that h′

β(1/2) = 0 and h′′
β(1/2) = 23−qq(q − 1 − β). 

Thus, if β < q − 1, then, 1/2 cannot be a maximum point of hβ .
Moreover, in (0, 1/2],
611
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h′
β(y)

q(1 − y)q−1 =
( y

1 − y

)q−1 − 1 + β
( y

1 − y

) q
2 −1 − β

(
y

1 − y

) q
2

(A.1)

Thus, to study the sign of h′
β , we can consider the right hand side of (A.1) and, for simplicity, we 

write it as

gβ(t) := tq−1 − 1 + βtq/2−1 − βtq/2, t ∈ (0,1],

whose derivative is

g′
β(t) = rβ(t)

2t2−q/2 where rβ(t) := 2(q − 1)tq/2 − βqt + β(q − 2).

Let us prove (ii).
Note that, whenever q ∈ (3/2, 2) and β > 0, we have that lim

y→0+ h
′
β(y) = +∞. Thus, since 

hβ(0) = 1, we get the existence of yβ ∈ (0, 1/2] such that hβ(yβ) = maxy∈[0,1] hβ(y) > 1.
Moreover

lim
t→0+ gβ(t) = +∞ and gβ(1) = 0. (A.2)

If β ∈ (0, q − 1) we have that rβ(0) < 0, rβ(1) > 0, and rβ is (strictly) increasing on the left of 
its unique maximum point ((q − 1)/β)2/(2−q) and then it is (strictly) decreasing. Thus rβ has a 
unique zero tβ which is the unique critical point (minimizer) of gβ and gβ is (strictly) decreasing 
in (0, tβ) and (strictly) increasing in (tβ, 1). Hence, by (A.2), gβ has a unique zero in (0, 1) which 
gives us the unique maximum point yβ .
If β = q − 1 we have that rβ(0) < 0, rβ(1) = 0, and rβ is (strictly) increasing in (0, 1). Thus 
g′
β is (strictly) negative in (0, 1) and so, by (A.1) and (A.2), h′

β is (strictly) positive in (0, 1/2). 
Hence the symmetry of hβ allows us to conclude.
If β > q − 1 we have that rβ(0) < 0, rβ(1) < 0, and rβ is (strictly) increasing on the left of its 
unique maximum point ((q − 1)/β)2/(2−q) and then it is (strictly) decreasing. Moreover

rβ

(
(q − 1)/β)2/(2−q)

)
= 2 − q

βq/(2−q)

(
(q − 1)2/(2−q) − β2/(2−q)

)
< 0.

Then, rβ is (strictly) negative in (0, 1) and so, by (A.1) and (A.2), h′
β is (strictly) positive in 

(0, 1/2). Hence we can conclude as in the previous step.
To prove the asymptotic behavior of yβ as β → 0+, let us recall that yβ ∈ (0, 1/2) for β < q − 1. 
If, by contradiction, we assume that yβ �→ 0 as β → 0+, then there exists a sequence {βn} tending 
to zero, such that hβn(yβn) > 1 and lim

n
yβn = � ∈ (0, 1/2]. Then

1 ≤ lim
n

hβn(yβn) = �q + (1 − �)q ≤ 1

2q−1 < 1

getting the contradiction.
Let us prove (iii).
In this case, namely whenever q ∈ (2, 3) and β > 0, we have that h′ (0) = −q . Moreover
β
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gβ(0) = −1 and gβ(1) = 0. (A.3)

If β ∈ (0, q − 1), we have that rβ(0) > 0, rβ(1) > 0, and rβ is (strictly) decreasing before its 
unique minimum point (β/(q − 1))2/(q−2) and then it is (strictly) increasing. Moreover

rβ

(
(β/(q − 1))2/(q−2)

)
= β(q − 2)

(q − 1)2/(q−2)

(
(q − 1)2/(q−2) − β2/(q−2)

)
> 0.

Thus, rβ is (strictly) positive in (0, 1) and so, by (A.1) and (A.3), h′
β is (strictly) negative in 

(0, 1/2). Hence the symmetry of hβ allows us to conclude.
If β = q − 1 we have that rβ(0) > 0, rβ(1) = 0, and rβ is (strictly) decreasing in (0, 1). Thus 
g′
β is (strictly) positive in (0, 1) and so, by (A.1) and (A.3), h′

β is (strictly) negative in (0, 1/2). 
Hence we can conclude as in the previous step.
If β > q − 1, we have that rβ(0) > 0, rβ(1) < 0, and rβ is (strictly) decreasing in (0, 1). Thus rβ
has a unique zero tβ which is the unique critical point (maximum point) of gβ and gβ is (strictly) 
increasing in (0, tβ) and (strictly) decreasing in (tβ, 1). Hence, by (A.3), gβ has a unique zero 
in (0, 1) which gives us a unique minimum point of hβ in (0, 1/2) and so, the unique local 
maximum point of hβ in (0, 1) is 1/2.
Since hβ(0) = hβ(1) = 1 and hβ(1/2) = (1 + β)/2q−1 we get that 1/2 is the global maximum 
point of hβ in [0, 1/2] if and only if β ≥ 2q−1 − 1 and it is the unique global maximum if and 
only if β > 2q−1 − 1.
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